Acquisition of the trace element copper (Cu) is critical to drive essential eukaryotic processes such as oxidative phosphorylation, iron mobilization, peptide hormone biogenesis, and connective tissue maturation. The Ctr1/Ctr3 family of Cu importers, first discovered in fungi and conserved in mammals, are critical for Cu movement across the plasma membrane or mobilization from endosomal compartments. Whereas ablation of Ctr1 in mammals is embryonic lethal, and Ctr1 is critical for dietary Cu absorption, cardiac function, and systemic iron distribution, little is known about the intrinsic contribution of Ctr1 for Cu permeation through membranes or its mechanism of action. Here, we identify three members of a Cu importer family from the thermophilic fungus : Ctr3a and Ctr3b, which function on the plasma membrane, and Ctr2, which likely functions in endosomal Cu mobilization. All three proteins drive Cu and isoelectronic silver (Ag) uptake in cells devoid of Cu importers. Transport activity depends on signature amino acid motifs that are conserved and essential for all Ctr1/3 transporters. Ctr3a is stable and amenable to purification and was incorporated into liposomes to reconstitute an Ag transport assay characterized by stopped-flow spectroscopy. Ctr3a has intrinsic high-affinity metal ion transport activity that closely reflects values determined , with slow turnover kinetics. Given structural models for mammalian Ctr1, Ctr3a likely functions as a low-efficiency Cu ion channel. The Ctr1/Ctr3 family may be tuned to import essential yet potentially toxic Cu ions at a slow rate to meet cellular needs, while minimizing labile intracellular Cu pools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6177576PMC
http://dx.doi.org/10.1074/jbc.RA118.004802DOI Listing

Publication Analysis

Top Keywords

intrinsic high-affinity
8
metal ion
8
ctr1/ctr3 family
8
plasma membrane
8
transport activity
8
reconstitution thermophilic
4
thermophilic importer
4
importer reveals
4
reveals intrinsic
4
high-affinity slow
4

Similar Publications

Calmodulin binding is required for calcium mediated TRPA1 desensitization.

bioRxiv

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.

Calcium (Ca) ions affect nearly all aspects of biology. Excessive Ca entry is cytotoxic and Ca-mobilizing receptors have evolved diverse mechanisms for tight regulation that often include Calmodulin (CaM). TRPA1, an essential Ca-permeable ion channel involved in pain signaling and inflammation, exhibits complex Ca regulation with initial channel potentiation followed by rapid desensitization.

View Article and Find Full Text PDF

Background: Fibroblast growth factor receptor (FGFR) inhibitors have significantly improved outcomes for patients with FGFR-altered cholangiocarcinoma, leading to their regulatory approval in multiple countries. However, as with many targeted therapies, acquired resistance limits their efficacy. A comprehensive, multimodal approach is crucial to characterizing resistance patterns to FGFR inhibitors.

View Article and Find Full Text PDF

The pharmacological basis for nonpeptide agonism of the GLP-1 receptor by orforglipron.

Sci Transl Med

December 2024

Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indianapolis, IN 46285, USA.

Orally bioavailable, synthetic nonpeptide agonists (NPAs) of the glucagon-like peptide-1 receptor (GLP-1R) may offer an effective, scalable pharmacotherapy to address the metabolic disease epidemic. One of the first molecules in the emerging class of GLP-1R NPAs is orforglipron, which is in clinical development for treating type 2 diabetes and obesity. Here, we characterized the pharmacological properties of orforglipron in comparison with peptide-based GLP-1R agonists and other NPAs.

View Article and Find Full Text PDF

Effects of allosteric effectors on oxygen binding to crystals of hemoglobin in the R-quaternary structure.

Protein Sci

January 2025

Division of Biophysics, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan.

Much is known about how allosteric effectors influence the equilibrium between the relaxed (R) and tense (T) states of hemoglobin (Hb), but little is known about how and to what extent the effectors lower the intrinsic O affinity of each allosteric state, especially the R-state. Here, we provide a thorough characterization of the O equilibria of effector-bound and unbound R-quaternary form crystals of horse Hb without a quaternary structural switching. In the absence of effectors, R crystals of horse Hb were shown to bind O noncooperatively with a very high affinity virtually identical to that of R crystals of human Hb.

View Article and Find Full Text PDF

Interleukin-2-secreting T helper cells promote extra-follicular B cell maturation via intrinsic regulation of a B cell mTOR-AKT-Blimp-1 axis.

Immunity

December 2024

Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA. Electronic address:

During antigen-driven responses, B cells can differentiate at extra-follicular (EF) sites or initiate germinal centers (GCs) in processes that involve interactions with T cells. Here, we examined the roles of interleukin (IL)-2 secreted by T helper (Th) cells during cognate interactions with activated B cells. IL-2 boosted the expansion of EF plasma cells and the secretion of low-mutated immunoglobulin G (IgG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!