Thioloxidoreductase HP0231 of Helicobacter pylori plays essential roles in gastric colonization and related gastric pathology. Comparative proteomics and analysis of complexes between HP0231 and its protein substrates suggested that several Hop proteins are its targets. HP0231 is a dimeric oxidoreductase that functions in an oxidizing Dsb (disulfide bonds) pathway of H. pylori. H. pylori HopQ possesses six cysteine residues, which generate three consecutive disulfide bridges. Comparison of the redox state of HopQ in wild-type cells to that in hp0231-mutated cells clearly indicated that HopQ is a substrate of HP0231. HopQ binds CEACAM1, 3, 5 and 6 (carcinoembryonic antigen-related cell adhesion molecules). This interaction enables T4SS-mediated translocation of CagA into host cells and induces host signaling. Site directed mutagenesis of HopQ (changing cysteine residues into serine) and analysis of the functioning of HopQ variants showed that HP0231 influences the delivery of CagA into host cells, in part through its impact on HopQ redox state. Introduction of a C382S mutation into HopQ significantly affects its reaction with CEACAM receptors, which disturbs T4SS functioning and CagA delivery. An additional effect of HP0231 on other adhesins and their redox state, resulting in their functional impairment, cannot be excluded.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmm.2018.08.002 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.
Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 10120, Thailand.
A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Nutrition, Second Military Medical University, Shanghai, China.
Tamoxifen is an inhibitor of estrogen receptors and was originally developed for breast cancer therapy. Besides, tamoxifen is widely used for Cre-estrogen receptor-mediated conditional knockout in transgenic mice. However, we found that the 3-month feeding of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!