A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wavelength dependence of the mechanisms governing the formation of nanosecond laser-induced damage in fused silica. | LitMetric

The influence of the wavelength on the morphology of nanosecond laser-induced damage on the exit surface of fused silica is investigated. A combination between the typical features of damage sites initiated at 1064 nm and 355 nm is observed at 532 nm, including ring patterns sporadically exhibited, in good agreement with calculations of the development of an electron avalanche at this wavelength. The associated ring appearance speed scales as the cube root of the laser intensity, and is ~10.5 km/s while it is ~20 km/s when initiated by infrared pulses. The whole set of results sheds light on the different wavelength-dependent mechanisms governing damage formation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.021819DOI Listing

Publication Analysis

Top Keywords

mechanisms governing
8
nanosecond laser-induced
8
laser-induced damage
8
fused silica
8
wavelength dependence
4
dependence mechanisms
4
governing formation
4
formation nanosecond
4
damage
4
damage fused
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!