The constituent elements of metasurfaces may be designed with explicit polarization dependence, making metasurfaces a fascinating platform for new polarization optics. In this work we show that a metasurface grating can be designed to produce arbitrarily specified polarization states on a set of defined diffraction orders given that the polarization of the incident beam is known. We also demonstrate that, when used in a reverse configuration, the same grating may be used as a parallel snapshot polarimeter, requiring a minimum of bulk polarization optics. We demonstrate its use in measuring partially polarized light, and show that it performs favorably in comparison to a commercial polarimeter. This work is of consequence in any application requiring lightweight, compact, and low-cost polarization optics, polarimetry, or polarization imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.021455DOI Listing

Publication Analysis

Top Keywords

polarization optics
12
polarization
8
polarization state
4
state generation
4
generation measurement
4
measurement single
4
single metasurface
4
metasurface constituent
4
constituent elements
4
elements metasurfaces
4

Similar Publications

Red-shifted optical absorption induced by donor-acceptor-donor π-extended dibenzalacetone derivatives.

RSC Adv

January 2025

Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil

Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.

View Article and Find Full Text PDF

Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy.

Mater Today Bio

February 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently.

View Article and Find Full Text PDF

Enhancing the Optically Detected Magnetic Resonance Signal of Organic Molecular Qubits.

ACS Cent Sci

January 2025

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.

In quantum information science and sensing, electron spins are often purified into a specific polarization through an optical-spin interface, a process known as optically detected magnetic resonance (ODMR). Diamond-NV centers and transition metals are both excellent platforms for these so-called color centers, while metal-free molecular analogues are also gaining popularity for their extended polarization lifetimes, milder environmental impacts, and reduced costs. In our earlier attempt at designing such organic high-spin π-diradicals, we proposed to spin-polarize by shelving triplet = ±1 populations as singlets.

View Article and Find Full Text PDF

Broadband and large surface enhancements of the local electric field enabled by cross-etched hyperbolic metamaterials.

Nanoscale

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.

Hyperbolic metamaterials (HMMs) have recently attracted significant research attention due to their hyperbolic wavevector iso-frequency contour, which leads to substantial local electric field (EF) enhancements that benefit optical processes, such as the nonlinear generation, quantum science, biomedical sensing, and more. However, three main challenges hinder their practical implementation: the difficulty in exciting their resonant modes using free-space incidence, the weak enhancement of surface EF, and the narrow spectral range of EF enhancements. Herein, we proposed cross-etched HMMs (CeHMMs) as a novel type of HMM, addressing these issues.

View Article and Find Full Text PDF

Crystal Structural Editing: Novel Biaxial MgTeO Crystal as Zero-Order Waveplates.

Adv Mater

January 2025

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China.

Waveplates are important optical components to control the polarization of light. Currently, they are often fabricated from uniaxial crystals, and there is no report about waveplates based on the biaxial crystals. In this work, a novel biaxial crystal MgTeO with a structure constructed by 0D TeO groups is designed and grown as waveplate materials for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!