Membrane fouling remains a major challenge for applying membrane technology to water treatment and, therefore, new tools to recognize the key foulants are essential for characterizing and evaluating the membrane fouling process. In this work, fluorescence excitation emission matrix coupled with parallel factor framework-clustering analysis was used to investigate the membrane fouling during the filtration process of humic acid (HA) and bovine serum albumin (BSA) solution by polyvinylidene fluoride membrane. Interestingly, the interaction between BSA and HA in the membrane fouling process was observed, and was further confirmed by infrared microspectroscopy and two-dimensional correlation spectroscopic analysis. In addition, the HA-induced membrane fouling was observed to be initially relieved, but became aggravated when a certain amount of BSA was added. Furthermore, with such an integrated approach, the OH groups in HA and amide bands in BSA were found to be mainly responsible for the membrane fouling and the HA-BSA interaction was mainly caused by the encapsulation of BSA with HA. This work develops a new method for probing membrane fouling and demonstrates the interaction between membrane foulants and its roles in membrane fouling process. Furthermore, the integrated approach developed in this work has a potential to explore other types of interfacial interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2018.08.019 | DOI Listing |
Environ Res
December 2024
School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:
Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.
View Article and Find Full Text PDFWater Res
December 2024
Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil. Electronic address:
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.
View Article and Find Full Text PDFWater Res
December 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:
Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.
View Article and Find Full Text PDFWater Res
December 2024
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, Shanghai, PR China. Electronic address:
Dense Janus membranes (JMs) are potential candidates in hypersaline wastewater treatments for membrane distillation (MD). However, dense surface layers generally add obvious membrane mass transfer resistance, limiting its practical application. In this study, a novel dense JM was facilely developed by controlled interfacial polymerization utilizing a phosphonium functional monomer (THPC) on hydrophilic polyvinylidene fluoride (PVDF) substrate.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of Songliao Aquatic Environment Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China. Electronic address:
Transparent Exopolymer Particles (TEP), closely related to the carbon cycle due to their high carbon-to-nitrogen ratio, have become a hot research topic. However, despite the growing interest in this field, there is a lack of comprehensive analysis providing a clear developmental background and quantitative research on the overall trends of TEP studies. To address the gap, this article utilizes VOSviewer and CiteSpace to conduct a bibliometric analysis of TEP research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!