Renin cells are crucial for survival - they control fluid-electrolyte and blood pressure homeostasis, vascular development, regeneration, and oxygen delivery to tissues. During embryonic development, renin cells are progenitors for multiple cell types that retain the memory of the renin phenotype. When there is a threat to survival, those descendants are transformed and reenact the renin phenotype to restore homeostasis. We tested the hypothesis that the molecular memory of the renin phenotype resides in unique regions and states of these cells' chromatin. Using renin cells at various stages of stimulation, we identified regions in the genome where the chromatin is open for transcription, mapped histone modifications characteristic of active enhancers such as H3K27ac, and tracked deposition of transcriptional activators such as Med1, whose deletion results in ablation of renin expression and low blood pressure. Using the rank ordering of super-enhancers, epigenetic rewriting, and enhancer deletion analysis, we found that renin cells harbor a unique set of super-enhancers that determine their identity. The most prominent renin super-enhancer may act as a chromatin sensor of signals that convey the physiologic status of the organism, and is responsible for the transformation of renin cell descendants to the renin phenotype, a fundamental process to ensure homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205391PMC
http://dx.doi.org/10.1172/JCI121361DOI Listing

Publication Analysis

Top Keywords

renin cells
16
renin phenotype
16
renin
11
blood pressure
8
memory renin
8
super-enhancers maintain
4
maintain renin-expressing
4
renin-expressing cell
4
cell identity
4
identity memory
4

Similar Publications

Vacuolar H-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor.

J Cell Physiol

January 2025

Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor.

View Article and Find Full Text PDF

Klotho deficiency is prevalent in various chronic kidney diseases. Although klotho is known to bind transforming growth factor β (TGFβ) receptor 1 to antagonize renal fibrosis, TGFβ also maintains regulatory T cells with inducing forkhead box protein P3 (FOXP3). Female New Zealand Black/White F (NZBWF1) mice were divided into two groups (n = 10 for each): one group was treated with daily subcutaneous injection of klotho protein (30 μg/kg/day) for 8 weeks, and the other only received vehicle.

View Article and Find Full Text PDF

Introduction: Increased serum uric acid (SUA) levels are found in cardiovascular and kidney diseases, associated with the development of vascular injury. Uric acid stimulates the inflammatory pathways, promotes vascular smooth muscle cells proliferation, activates renin-angiotensin system leading to the development and progression of vascular damage. Renal function-normalized uric acid [SUA to serum creatinine ratio (SUA/SCr)] has been suggested to be a better indicator of uric acid.

View Article and Find Full Text PDF

Purpose: Emerging literature links the role of the renin-angiotensin-aldosterone system (RAAS) to the progression of cancers. However, the function of RAAS has not been verified in Clear-cell renal cell carcinoma (ccRCC).

Methods: ACE expression in ccRCC tissues was determined using RT-PCR, Western blot, and immunohistochemistry staining.

View Article and Find Full Text PDF

Study Objectives: Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), and is associated with increased cardiovascular mortality that may not be reduced by standard therapies. Inappropriate activation of the renin-angiotensin-aldosterone system occurs in IH, and mineralocorticoid receptor (MR) blockade has been shown to improve vascular outcomes in cardiovascular disease. Thus, we hypothesized that MR inhibition prevents coronary and renal vascular dysfunction in mice exposed to chronic IH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!