In this paper, the problem of adaptive neural state-feedback tracking control is considered for a class of stochastic nonstrict-feedback nonlinear switched systems with completely unknown nonlinearities. In the design procedure, the universal approximation capability of radial basis function neural networks is used for identifying the unknown compounded nonlinear functions, and a variable separation technique is employed to overcome the design difficulty caused by the nonstrict-feedback structure. The most outstanding novelty of this paper is that individual Lyapunov function of each subsystem is constructed by flexibly adopting the upper and lower bounds of the control gain functions of each subsystem. Furthermore, by combining the average dwell-time scheme and the adaptive backstepping design, a valid adaptive neural state-feedback controller design algorithm is presented such that all the signals of the switched closed-loop system are in probability semiglobally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood of the origin in probability. Finally, the availability of the developed control scheme is verified by two simulation examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2018.2860944 | DOI Listing |
Eur J Pediatr
January 2025
Neonatal Intensive Care Centre, St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK.
To assess respiratory changes after neurally adjusted ventilatory assist (NAVA) initiation in preterm infants with evolving or established bronchopulmonary dysplasia (BPD). Premature infants born less than 32 weeks gestation with evolving or established BPD initiated on invasive or non-invasive (NIV) NAVA were included. Respiratory data: PCO and SpO₂/FiO₂ (S/F) ratio before and at 4, 24, 48 h post-NAVA initiation were collected.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States.
Cell-penetrating peptides (CPPs) are short peptides capable of penetrating cell membranes, making them valuable for drug delivery and intracellular targeting. Accurate prediction of CPPs can streamline experimental validation in the lab. This study aims to assess pretrained protein language models (pLMs) for their effectiveness in representing CPPs and develop a reliable model for CPP classification.
View Article and Find Full Text PDFFront Neurorobot
January 2025
College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong, Shanxi, China.
Accurate building segmentation has become critical in various fields such as urban management, urban planning, mapping, and navigation. With the increasing diversity in the number, size, and shape of buildings, convolutional neural networks have been used to segment and extract buildings from such images, resulting in increased efficiency and utilization of image features. We propose a building semantic segmentation method to improve the traditional Unet convolutional neural network by integrating attention mechanism and boundary detection.
View Article and Find Full Text PDFFront Big Data
January 2025
School of Information Science and Technology, Shihezi University, Xinjiang, China.
Predictions of student performance are important to the education system as a whole, helping students to know how their learning is changing and adjusting teachers' and school policymakers' plans for their future growth. However, selecting meaningful features from the huge amount of educational data is challenging, so the dimensionality of student achievement features needs to be reduced. Based on this motivation, this paper proposes an improved Binary Snake Optimizer (MBSO) as a wrapped feature selection model, taking the Mat and Por student achievement data in the UCI database as an example, and comparing the MBSO feature selection model with other feature methods, the MBSO is able to select features with strong correlation to the students and the average number of student features selected reaches a minimum of 7.
View Article and Find Full Text PDFAnimals survive in dynamic environments changing at arbitrary timescales, but such data distribution shifts are a challenge to neural networks. To adapt to change, neural systems may change a large number of parameters, which is a slow process involving forgetting past information. In contrast, animals leverage distribution changes to segment their stream of experience into tasks and associate them with internal task abstracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!