Total electron scattering cross sections, from para-benzoquinone, for impact energies ranging between 1 to 200 eV, have been obtained by measuring the attenuation of a linear electron beam under magnetic confinement conditions. Random uncertainty limits on these values have been found to be within 5%. Systematic errors, due to the axial magnetic beam conditions in combination with the acceptance angle of the detector, have been evaluated by integrating our calculated independent atom model with the screening corrected additivity rule and interference term elastic differential cross sections over that detection acceptance angle. Our previous calculations and measurements on this molecule (Jones et al., J. Chem. Phys., 2018, 148, 124312 and J. Chem. Phys., 2018, 148, 204305), have been compiled and complemented with new elastic and inelastic scattering cross section calculations in order to obtain a comprehensive cross section data base, within the considered energy range, for modelling purposes. The self-consistency of the present data set has been evaluated by simulating the electron transport of 15 eV electrons in para-benzoquinone, and comparing those results with the observed transmitted intensity distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp03297a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!