Human papillomaviruses (HPVs) are frequently integrated in HPV-associated cancers. HPV genomes can be integrated in three patterns: A single integrated HPV genome (type I), multiple, tandemly integrated HPV genomes (type II), and multiple, tandemly integrated HPV genomes interspersed with host DNA (type III). Analysis of the organization of type II and type III integration sites is complicated by their repetitive nature, as sequences of individual repeats are difficult to distinguish from each other. This article presents a method for directly visualizing HPV integration sites using molecular combing combined with fluorescent in situ hybridization, also known as fiber-FISH. In this technique, genomic DNA is stretched across a glass coverslip and individual integrated HPV sequences are detected and directly visualized by in situ hybridization with a resolution of ∼1 kb. Fiber-FISH allows comprehensive characterization of the genomic organization of HPV integration sites containing type II and type III integration. © 2018 by John Wiley & Sons, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209533 | PMC |
http://dx.doi.org/10.1002/cpmc.61 | DOI Listing |
Microbiol Spectr
January 2025
PathAI Diagnostics, Memphis, Tennessee, USA.
Incorporating molecular testing for human papillomavirus (HPV) into the screening of cervical specimens can improve risk stratification and, in turn, patient management. Infection with a high-risk (HR) HPV genotype is associated with greater risk for persistent infection, viral integration, and progression of cervical neoplasia. Current guidelines consider HPV 16 or HPV 18 clinically actionable with referral to colposcopy; however, 12 Other HR HPV genotypes have been associated with cervical cancer risk, suggesting a benefit of extended genotyping.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. HPV-negative HNSCC, which arises in the upper airway mucosa, is particularly aggressive, with nearly half of patients succumbing to the disease within five years and limited response to immune checkpoint inhibitors compared to other cancers. There is a need to further explore the complex immune landscape in HPV-negative HNSCC to identify potential therapeutic targets.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan.
Integration of human papillomavirus (HPV) into the host genome drives HPV-positive head and neck squamous cell carcinoma (HPV HNSCC). Whole-genome sequencing of 51 tumors revealed intratumor heterogeneity of HPV integration, with 44% of breakpoints subclonal, and a biased distribution of integration breakpoints across the HPV genome. Four HPV physical states were identified, with at least 49% of tumors progressing without integration.
View Article and Find Full Text PDFViruses
December 2024
Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.
This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.
View Article and Find Full Text PDFViruses
December 2024
Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
Human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HPV-positive HNSCC) has distinct biological characteristics from HPV-negative HNSCC. Using an AI-based analytical platform on meta cohorts, we profiled expression patterns of viral transcripts and HPV viral genome integration, and classified the tumor microenvironment (TME). Unsupervised clustering analysis revealed five distinct and novel TME subtypes across patients (immune-enriched, highly immune and B-cell enriched, fibrotic, immune-desert, and immune-enriched luminal).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!