In this study, sewage sludge-derived activated carbon (SDAC) was synthesized, characterized, and tested for its potential as an adsorbent of methyl tert-butyl ether (MTBE). The SDAC was produced by activating the sludge with zinc chloride and subsequently subjected to various ranges of pyrolytic temperatures. It was then characterized using SEM/EDX, BET, and TGA. The SEM-EDX analyses showed that impurities like Fe, Al, Mg, Mn, Ca, and Na of the raw sludge were removed by the higher pyrolytic temperature and acid-washing procedures. TGA showed the thermal stability of the produced material. Results of the BET revealed a significant increase in surface area of the sludge from 1.5 m/g to 385 m/g after acid washing. The MTBE removal efficiency of 70% was achieved after 60 min with 2 g/L of SDAC at pH 6, and initial MTBE concentration of 1 ppm. The adsorption kinetics of SDAC fitted into pseudo-second-order reactions. This work demonstrated a beneficial use of a bio-waste material (sewage sludge) in water treatment technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-2737-0DOI Listing

Publication Analysis

Top Keywords

sewage sludge-derived
8
sludge-derived activated
8
activated carbon
8
treating mtbe-contaminated
4
mtbe-contaminated water
4
water sewage
4
carbon study
4
study sewage
4
sdac
4
carbon sdac
4

Similar Publications

In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500°C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluates the safety of using thermochemically treated sewage sludge from a distillery's wastewater treatment plant as a soil additive by examining its physicochemical properties and the bioaccumulation of heavy metals in maize.
  • - Pyrolysis at 400 °C alters the sludge's characteristics positively, increasing pH, carbon, nitrogen, and ash content, while reducing electrical conductivity, cation exchange capacity, and harmful polycyclic aromatic hydrocarbons.
  • - Results show that adding 1% biochar from the treated sludge improves soil properties and doesn't enhance heavy metal uptake in maize or affect cress seed germination, though it does impact the soil's microbial community.
View Article and Find Full Text PDF

Enhanced phosphorus bioavailability of biochar derived from sewage sludge co-pyrolyzed with K, Ca-rich biomass ash.

Water Res

March 2025

Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Sewage sludge has great potential for phosphorus (P) recovery. However, sewage sludge-derived biochar suffers from low P bioavailability in land application. K, Ca-rich biomass ash was used to co-pyrolyze with sewage sludge to enhance P bioavailability of synthesized biochar.

View Article and Find Full Text PDF

Olive mill wastewater treatment using coagulation/flocculation and filtration processes.

Heliyon

November 2024

Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.

Olive mill wastewater (OMWW), a pollutant resulting from the olive oil industry, poses a serious ecological challenge due to its high pollution load. This effluent is highly concentrated in chemical oxygen demand (COD), which is 200 times higher than that of sewage wastewater. Moreover, OMWW is characterized by a strong acidity, high content of fatty matter, and high concentration of phenolic compounds.

View Article and Find Full Text PDF

Elucidating the Molecular Mechanisms and Comprehensive Effects of Sludge-Derived Plant Biostimulants on Crop Growth: Insights from Metabolomic Analysis.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.

The utilization of urban waste for land management plays a crucial role in reshaping material flows between human activities and the environment. Sewage sludge alkaline thermal hydrolysis (ATH) produces sludge-derived plant biostimulants (SPB), which have garnered attention due to the presence of indole-3-acetic acid. However, there remains a gap in understanding SPB's molecular-level effects and its comprehensive impact on crops throughout their growth cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!