Conventional 2D cell culture techniques have provided fundamental insights into key biochemical and biophysical mechanisms responsible for various cellular behaviors, such as cell adhesion, spreading, division, proliferation, and differentiation. However, 2D culture in vitro does not fully capture the physical and chemical properties of the native microenvironment. There is a growing body of research that suggests that cells cultured on 2D substrates differ greatly from those grown in vivo. This article focuses on recent progress in using bioinspired 3D matrices that recapitulate as many aspects of the natural extracellular matrix as possible. A range of techniques for the engineering of 3D microenvironment with precisely controlled biophysical and chemical properties, and the impact of these environments on cellular behavior, is reviewed. Finally, an outlook on future challenges for engineering the 3D microenvironment and how such approaches would further our understanding of the influence of the microenvironment on cell function is provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096985 | PMC |
http://dx.doi.org/10.1002/advs.201800448 | DOI Listing |
Langmuir
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
The lateral flow assay is a strip-based analytical method for the portable and convenient detection of analytes of interest. It has the advantages of visual observation, autonomous sample flow, fast coloration time, minimal tedious operation procedures, and reliance on specialized instruments. However, the rough surface of the nitrocellulose membrane renders it difficult for the immobilized nucleic acids to remain in an ordered arrangement, and the immobilized nucleic acids are also liable to be digested in a complex matrix, inducing limited sensitivity and anti-interference.
View Article and Find Full Text PDFJ Diet Suppl
January 2025
Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
Background: Several epidemiological studies and intervention trials have demonstrated that grapes and blueberries, which are rich in flavanols, can lower the risk of cardiovascular disease. However, the mechanisms of action of these compounds remain unclear due to their low bioavailability.
Objective: This study aimed to characterize the sensory properties, blood flow velocity, and oxidative stress of a polyphenol rich grape and blueberry extract (PEGB) containing approximately 16% flavanols (11% monomers and 4% dimers).
J Cancer Res Ther
December 2024
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China.
Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
Molecular beacon (MB) probes have been extensively used for nucleic acid analysis. However, MB probes fail to hybridize with folded DNA or RNA. Here, we demonstrate that MB probes equipped with extra sequences complementary to the analyte, named 'tail', can increase the signal-to-background ratio by ∼40-fold and hybridization rates by ∼800-fold compared to conventional MB probes.
View Article and Find Full Text PDFChemistry
January 2025
Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.
NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!