Development of high-performance and cost-effective non-noble metal electrocatalysts is pivotal for the eco-friendly production of hydrogen through electrolysis and hydrogen energy applications. Herein, the synthesis of an unconventional nickel nitride nanostructure enriched with nitrogen vacancies (NiN ) through plasma-enhanced nitridation of commercial Ni foam (NF) is reported. The self-supported NiN /NF electrode can deliver a hydrogen evolution reaction (HER) activity competitive to commercial Pt/C catalyst in alkaline condition (i.e., an overpotential of 55 mV at 10 mA cm and a Tafel slope of 54 mV dec), which is much superior to the stoichiometric NiN, and is the best among all nitride-based HER electrocatalysts in alkaline media reported thus far. Based on theoretical calculations, it is further verified that the presence of nitrogen vacancies effectively enhances the adsorption of water molecules and ameliorates the adsorption-desorption behavior of intermediately adsorbed hydrogen, which leads to an advanced HER activity of NiN /NF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097009 | PMC |
http://dx.doi.org/10.1002/advs.201800406 | DOI Listing |
Nat Commun
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore.
Photocatalytic conversion has emerged as a promising strategy for harnessing renewable solar energy in the valorization of plastic waste. However, research on the photocatalytic transformation of plastics into valuable nitrogen-containing chemicals remains limited. In this study, we present a visible-light-driven pathway for the conversion of polylactic acid (PLA) into alanine under mild conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Micro/nano Devices and Systems, Ministry of Education, North University of China, Taiyuan, 030051, China.
As the hyperentanglement of photon systems holds lots of remarkable applications for enhancing channel capacity with less quantum resource, the interconversion of various hyperentangled states warrants in-depth investigation and becomes a vital work for quantum information technologies. Here we realize completely mutual conversions between spatial-polarization hyperentangled Knill-Laflamme-Milburn state and hyperentangled W state for three-photon systems, resorting to hyperparallel quantum control gates and the practical nonlinear interaction of nitrogen-vacancy centers coupled with whispering-gallery-mode microresonators. The hyperparallel quantum gates, i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.
The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers.
View Article and Find Full Text PDFSmall Methods
January 2025
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
Integration of different active sites by heterostructure engineering is pivotal to optimize the intrinsic activities of an oxygen electrocatalyst and much needed to enhance the performance of rechargeable Zn-air batteries (ZABs). Herein, a biphasic nanoarchitecture encased in in situ grown N-doped graphitic carbon (MnO/Co-NGC) with heterointerfacial sites are constructed. The density functional theory model reveals formation of lattice oxygen bridged heterostructure with pyridinic nitrogen atoms anchored Co species, which facilitate adsorption of oxygen intermediates.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093, Zürich, Switzerland.
Quantum magnetometers based on spin defects in solids enable sensitive imaging of various magnetic phenomena, such as ferro- and antiferromagnetism, superconductivity, and current-induced fields. Existing protocols primarily focus on static fields or narrow-band dynamical signals, and are optimized for high sensitivity rather than fast time resolution. Here, we report detection of fast signal transients, providing a perspective for investigating the rich dynamics of magnetic systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!