Satellite chlorophyll (chl ) observations have repeatedly noted summertime phytoplankton blooms in the North Pacific subtropical gyre (NPSG), a region of open ocean that is far removed from any land-derived or Ekman upwelling nutrient sources. These blooms are dominated by N-fixing diatom-cyanobacteria associations of the diatom genera Brightwell and Ehrenberg. Their nitrogen fixing endosymbiont, J.A. Schmidt, is hypothesized to be critical to the development of blooms in this nitrogen limited region. However, due to the remote location and unpredictable duration of the summer blooms, prolonged in situ observations are rare outside of the Station ALOHA time-series off of Hawai'i. In summer, 2015, a proof-of-concept mission using the autonomous vehicle, (Wave Glider SV2; Liquid Robotics, a Boeing company, Sunnyvale, CA, USA), collected near-surface (<20 m) observations in the NPSG using hydrographic, meteorological, optical, and imaging sensors designed to focus on phytoplankton abundance, distribution, and physiology of this bloom-forming region. and cell abundance was determined using digital holography for the entire June-November mission. was not able to reach the 30°N subtropical front region where most of the satellite chl blooms have been observed, but near-real time navigational control allowed it to transect two blooms near 25°N. The two taxa did not co-occur in large numbers, rather the blooms were dominated by either or . The August 2-4, 2015 bloom was comprised of 96% and the second bloom, August 15-17, 2015, was dominated by (75%). The holograms also imaged undisturbed, fragile aggregates throughout the sampled area at ∼10 L. Aggregated represented the entire observed population at times and had a widespread distribution independent of the summer export pulse, a dominant annual event suggested to be mediated by aggregate fluxes. Aggregate occurrence was not consistent with a density dependent formation mechanism and may represent a natural growth form in undisturbed conditions. The photosynthetic potential index (F:F) increased from ∼0.4 to ∼0.6 during both blooms indicating a robust, active phytoplankton community in the blooms. The diel pattern of F:F (nocturnal maximum; diurnal minimum) was consistent with macronutrient limitation throughout the mission with no evidence of Fe-limitation despite the presence of nitrogen fixing diatom-diazotroph assemblages. During the 5-month mission, covered ∼5,690 km (3,070 nautical miles), acquired 9,336 holograms, and reliably transmitted data onshore in near real-time. Software issues developed with the active fluorescence sensor that terminated measurements in early September. Although images were still useful at the end of the mission, fouling of the LISST-Holo optics was considerable, and appeared to be the most significant issue facing deployments of this duration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6098680PMC
http://dx.doi.org/10.7717/peerj.5387DOI Listing

Publication Analysis

Top Keywords

north pacific
8
blooms
5
summer diatom
4
diatom blooms
4
blooms eastern
4
eastern north
4
pacific gyre
4
gyre investigated
4
investigated long-endurance
4
long-endurance autonomous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!