Betulinic acid is a pentacyclic plant compound obtained from the bark of white birch trees and has been demonstrated to exhibit notable pharmacological properties. In the present study, the anticancer potential of betulinic acid on paclitaxel-resistant lung cancer cell line (H460) was evaluated. Cell viability was evaluated by an MTT assay, and a clonogenic assay was performed to assess the effects on cancer cell colony formation. DAPI staining using fluorescence microscopy and flow cytometry were employed to evaluate the effects of betulinic acid on apoptosis. The effects of betulinic acid on the cell cycle and mitochondrial membrane potential were also evaluated by flow cytometry. The effects of betulinic acid on the protein expression of B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X (Bax) were evaluated by western blot analysis. The results of the present study indicated that the half-maximal inhibitory concentration value of betulinic acid on paclitaxel-resistant H460 lung cancer cells was 50 µM. The treatment with betulinic acid was able to inhibit the colony formation potential in a dose-dependent manner. A lower cytoxicity by betulinic acid against normal human epithelial FR2 cells was observed compared with H460 cells. The betulinic acid exerted anticancer activity via the induction of apoptosis by regulating the Bcl-2/Bax signaling pathway. Additionally, treatment with betulinic acid resulted in cell cycle arrest of paclitaxel-resistant lung cancer H460 cells at the G2/M phase. Betulinic acid was also reported to cause reductions in the mitochondrial membrane potential in a dose-dependent manner. In conclusion, the results of the present study indicated that betulinic acid may be a useful drug candidate for the management of drug-resistant lung cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096078 | PMC |
http://dx.doi.org/10.3892/ol.2018.9097 | DOI Listing |
Int Immunopharmacol
January 2025
Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Intestinal injury of weaned piglets often leads to reduced immunity, diarrhea and growth retardation, resulting in significant economic losses to agriculture. Betulinic acid (BA) is a natural plant-derived active ingredient with multiple pharmacological activities including immune modulation and anti-inflammatory. This study was aimed to investigate the potential mechanism that BA as a feed additive mitigated lipopolysaccharide (LPS)-induced intestinal injury in piglets.
View Article and Find Full Text PDFBMC Chem
January 2025
Department of Biochemistry, University of Johannesburg, Auckland Park Campus, Cnr Kingsway Avenue and University Road, Auckland, Park, PO Box 524, Johannesburg, 2006, South Africa.
Malaria is the extensive health concern in sub-Saharan Africa, with Plasmodium falciparum being the most lethal strain. The continued emergence of drug-resistant P. falciparum advocates for the development of new antimalarials.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India.
Betulinic acid (BA) has been shown to exhibit various pharmacological activities and it has shown the protective effect on acute renal failure (ARF) and chronic renal failure (CRF); however, no reports are available on its effect on ARF-CRF transition. Therefore, we aimed to investigate the effects of BA on ARF-CRF transition. A single dose of 250 mg/kg body weight (BW) intraperitoneal injection of folic acid was given in mice for inducing ARF-CRF transition (injury group; I) on day 1.
View Article and Find Full Text PDFRSC Adv
January 2025
University of Wuppertal, School of Mathematics and Natural Sciences Gaussstrasse 2042119 Wuppertal Germany
Betulinic acid and other herbal pentacyclic triterpenes have attracted interest in cancer research as these natural products induce apoptosis and suppress tumor progression. However, the molecular basis of the antitumor effect is still unknown. Here we show that monophthalates of betulinic acid and related triterpenes inhibit GDP/GTP exchange in oncogenic K-RAS4B proteins the PI3K/AKT downstream cascade.
View Article and Find Full Text PDFSci Rep
January 2025
Section of Botany, Department of Biology, Science Faculty, Ege University, Bornova, İzmir, Turkey.
Despite its important pharmacological bioactivities, betulinic acid is still primarily obtained through extraction from heartwood and bark or synthesized synthetically, with less than 3% efficiency. Our endemic rose species, Rosa pisiformis (Christ.) D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!