The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond.

Front Immunol

Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Published: October 2019

Psoriasis is a frequent chronic inflammatory skin disease, nowadays considered a major global health problem. Several new drugs, targeting the IL-23/IL-17A pathway, have been recently licensed or are in clinical development. These therapies represent a major improvement of the way in which psoriasis is managed, since they show an unprecedented efficacy on skin symptoms of psoriasis. This has been made possible, thanks to an increasingly more accurate pathogenic view of psoriasis. Today, the belief that Th17 cells mediate psoriasis is moving to the concept of psoriasis as an IL-17A-driven disease. New questions arise at the horizon, given that IL-17A is part of a newly described family of cytokines, which has five distinct homologous: IL-17B, IL-17C, IL-17D, IL-17E, also known as IL-25 and IL-17F. IL-17 family cytokines elicit similar effects in target cells, but simultaneously trigger different and sometimes opposite functions in a tissue-specific manner. This is complicated by the fact that IL-17 cytokines show a high capacity of synergisms with other inflammatory stimuli. In this review, we will summarize the current knowledge around the cytokines belonging to the IL-17 family in relation to skin inflammation in general and psoriasis in particular, and discuss possible clinical implications. A comprehensive understanding of the different roles played by the IL-17 cytokines is crucial to appreciate current and developing therapies and to allow an effective pathogenesis- and mechanisms-driven drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088173PMC
http://dx.doi.org/10.3389/fimmu.2018.01682DOI Listing

Publication Analysis

Top Keywords

il-17 family
12
family cytokines
12
psoriasis
8
il-17 cytokines
8
cytokines
6
il-17
5
cytokines psoriasis
4
psoriasis il-17a
4
il-17a psoriasis
4
psoriasis frequent
4

Similar Publications

Background: Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. This study aims to explore the potential mechanisms by which solute carrier family 7 member 11 (SLC7A11) influences RA development.

Methods: Collagen-induced arthritis (CIA) mice were constructed to observe disease onset and pathological scores.

View Article and Find Full Text PDF

Multifaceted roles of IL-17 in bone and tendon health.

Int J Biol Macromol

January 2025

Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China. Electronic address:

The interleukin-17 (IL-17) family, encompassing IL-17A to IL-17F, plays pivotal roles across various biomedical fields. IL-17A, a prominent cytokine, has garnered significant attention. However, the pathological effects of IL-17 can often be unpredictable.

View Article and Find Full Text PDF

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner.

View Article and Find Full Text PDF

Background: Pregnancy is a complex biological process and serious complications can arise when the delicate balance between the maternal and semi-allogeneic fetal immune systems is disrupted or challenged. Gestational diabetes mellitus (GDM), pre-eclampsia, preterm birth, and low birth weight pose serious threats to maternal and fetal health. Identification of early biomarkers through an in-depth understanding of molecular mechanisms is critical for early intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!