Mononuclear phagocytes are key regulators of both tissue damage and repair in neuroinflammatory conditions such as multiple sclerosis. To examine divergent phagocyte phenotypes in the inflamed CNS, we introduce an in vivo imaging approach that allows us to temporally and spatially resolve the evolution of phagocyte polarization in a murine model of multiple sclerosis. We show that the initial proinflammatory polarization of phagocytes is established after spinal cord entry and critically depends on the compartment they enter. Guided by signals from the CNS environment, individual phagocytes then switch their phenotype as lesions move from expansion to resolution. Our study thus provides a real-time analysis of the temporospatial determinants and regulatory principles of phagocyte specification in the inflamed CNS.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41593-018-0212-3DOI Listing

Publication Analysis

Top Keywords

multiple sclerosis
12
mononuclear phagocytes
8
inflamed cns
8
phagocytes locally
4
locally adapt
4
adapt phenotype
4
phenotype multiple
4
sclerosis model
4
model mononuclear
4
phagocytes key
4

Similar Publications

Bruton's tyrosine kinase inhibitor for multiple sclerosis: new hope or false dawn.

J Neurol

January 2025

Institute of Psychological Medicine and Clinical Neuroscience, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, UK.

The first of several phase 3 trials examining efficacy in relapsing MS has not been able to demonstrate a significant benefit and has also raised important safety concerns. More results are on their way and it will be important to understand whether the safety signals identified are drug- or class-specific and whether other BTKi also fail to reach their endpoints for relapsing MS. However, as reported in preliminary data for another BTKi, it may be that they will have more of a role in progressive disease as hinted by the unraveling of relevant molecular mechanisms and pathways.

View Article and Find Full Text PDF

Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.

Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.

View Article and Find Full Text PDF

Background: Previous studies have shown that people with multiple sclerosis (MS) had frequent healthcare visits up to 10 years before being diagnosed but with no information from magnetic resonance imaging (MRI) scans of the connection with the radiologically isolated syndrome (RIS).

Objective: To analyze healthcare use 3 years before the RIS diagnosis.

Methods: We examined healthcare usage before the first scan in RIS cases from 2010 to 2019.

View Article and Find Full Text PDF

Olfactory dysfunction (OD) is an underestimated symptom in multiple sclerosis (MS). Multiple factors may play a role in the OD reported by MS patients, such as ongoing inflammation in the central nervous system (CNS), damage to the olfactory bulbs due to demyelination, and the presence of plaques in brain areas associated with the olfactory system. Indeed, neuroimaging studies in MS have shown a clear association of the OD with the number and activity of MS-related plaques in frontal and temporal brain regions.

View Article and Find Full Text PDF

Forecasting the progression of the disease in the early inflammatory stage of the most prevalent type of multiple sclerosis (MS), referred to as relapsing-remitting multiple sclerosis (RRMS), is essential for making prompt treatment modifications, aimed to reduce clinical relapses and disability. In total, 58 patients with RRMS, having an Expanded Disability Status Scale (EDSS) score less than 4, were included in this study. Baseline magnetic resonance imaging (MRI) was performed, and brain and spinal cord lesions were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!