Genome-wide measurement of local nucleosome array regularity and spacing by nanopore sequencing.

Nat Struct Mol Biol

Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany.

Published: September 2018

AI Article Synopsis

Article Abstract

The nature of chromatin as regular succession of nucleosomes has gained iconic status. However, since most nucleosomes in metazoans are poorly positioned it is unknown to which extent bulk genomic nucleosome repeat length reflects the regularity and spacing of nucleosome arrays at individual loci. We describe a new approach to map nucleosome array regularity and spacing through sequencing oligonucleosome-derived DNA by Illumina sequencing and emergent nanopore technology. In Drosophila cells, this revealed modulation of array regularity and nucleosome repeat length depending on functional chromatin states independently of nucleosome positioning and even in unmappable regions. We also found that nucleosome arrays downstream of silent promoters are considerably more regular than those downstream of highly expressed ones, despite more extensive nucleosome phasing of the latter. Our approach is generally applicable and provides an important parameter of chromatin organization that so far had been missing.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-018-0110-0DOI Listing

Publication Analysis

Top Keywords

array regularity
12
regularity spacing
12
nucleosome
8
nucleosome array
8
nucleosome repeat
8
repeat length
8
nucleosome arrays
8
genome-wide measurement
4
measurement local
4
local nucleosome
4

Similar Publications

Infrared array sensor-based fall detection and activity recognition systems have gained momentum as promising solutions for enhancing healthcare monitoring and safety in various environments. Unlike camera-based systems, which can be privacy-intrusive, IR array sensors offer a non-invasive, reliable approach for fall detection and activity recognition while preserving privacy. This work proposes a novel method to distinguish between normal motion and fall incidents by analyzing thermal patterns captured by infrared array sensors.

View Article and Find Full Text PDF

Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as BioHastalex. The pristine material's surface morphology and surface chemistry were examined by various analytical methods. The BioHastalex with a thin silver layer was subsequently heat treated and characterized, the impact on the material surface wettability and morphology was evaluated.

View Article and Find Full Text PDF

Management of nutritional deficiencies following one anastomosis gastric bypass (OAGB): a single-center experience.

Updates Surg

January 2025

Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.

Background: Metabolic/bariatric surgery (MBS) remains the most effective and long-lasting treatment for obesity and its complications. Apart from any surgical complications, the often less obvious but possibly severe side-effects of nutritional deficiencies have become of interest in recent years. OAGB is known to come with the need for thorough supplementation.

View Article and Find Full Text PDF

3D printable and myoelectrically sensitive hydrogel for smart prosthetic hand control.

Microsyst Nanoeng

January 2025

Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.

Surface electromyogram (sEMG) serves as a means to discern human movement intentions, achieved by applying epidermal electrodes to specific body regions. However, it is difficult to obtain high-fidelity sEMG recordings in areas with intricate curved surfaces, such as the body, because regular sEMG electrodes have stiff structures. In this study, we developed myoelectrically sensitive hydrogels via 3D printing and integrated them into a stretchable, flexible, and high-density sEMG electrodes array.

View Article and Find Full Text PDF

Beyond Longer Intervals: Advocating for Regular Treatment of Neovascular AMD.

J Clin Med

December 2024

Division of Ophthalmology, Department of Surgery, UMass Chan-Lahey School of Medicine, Burlington, MA 01805, USA.

Personalizing the management of neovascular age-related macular degeneration (nAMD) poses significant challenges for practicing retina specialists and their patients. This commentary addresses some of these complexities, particularly those that arise in the context of an expanding array of intravitreal agents targeting vascular endothelial growth factor (VEGF) and related retinal disease targets. Many of these newer agents approved by the Food and Drug Administration (FDA) for the treatment of nAMD have labeling that indicates that they can provide non-inferior visual outcomes when compared head-to-head with previously available treatments and can be used at significantly extended dosing intervals in some patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!