Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nerve injury is often associated with limited axonal regeneration and thus leads to delayed or incomplete axonal reinnervation. As a consequence of slow nerve regeneration, target muscle function is often insufficient and leads to a lifelong burden. Recently, the diagnosis of nerve injuries has been improved and likewise surgical reconstruction has undergone significant developments. However, the problem of slow nerve regeneration has not been solved. In a recent meta-analysis, we have shown that the application of low-intensity ultrasound promotes nerve regeneration experimentally and thereby can improve functional outcomes. Here we want to demonstrate the experimental effect of low intensity ultrasound on nerve regeneration, the current state of investigations and its possible future clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126126 | PMC |
http://dx.doi.org/10.4103/1673-5374.237113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!