Modelling of sea-ice phenomena.

Philos Trans A Math Phys Eng Sci

Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9016, New Zealand.

Published: September 2018

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107615PMC
http://dx.doi.org/10.1098/rsta.2018.0157DOI Listing

Publication Analysis

Top Keywords

modelling sea-ice
4
sea-ice phenomena
4
modelling
1
phenomena
1

Similar Publications

Cloud radiative effect dominates variabilities of surface energy budget in the dark Arctic.

Sci Rep

January 2025

Lawrence Livermore National Laboratory, Livermore, CA, USA.

Climate models simulate a wide range of temperatures in the Arctic. Here we investigate one of the main drivers of changes in surface temperature: the net surface heat flux in the models. We show that in the winter months of the dark Arctic, there is a more than two-fold difference in the net surface heat fluxes among the models, and this difference is dominated by the downward infrared radiation from clouds.

View Article and Find Full Text PDF

Evolutionary diversification and succession of soil huge phages in glacier foreland.

Microbiome

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.

Background: Huge phages (genome size ≥ 200 kb) have been detected in diverse habitats worldwide, infecting a variety of prokaryotes. However, their evolution and adaptation strategy in soils remain poorly understood due to the scarcity of soil-derived genomes.

Results: Here, we conduct a size-fractioned (< 0.

View Article and Find Full Text PDF

Mercury (Hg) contamination poses a persistent threat to the remote Arctic ecosystem, yet the mechanisms driving the pronounced summer rebound of atmospheric gaseous elemental Hg (Hg) and its subsequent fate remain unclear due to limitations in large-scale seasonal studies. Here, we use an integrated atmosphere-land-sea-ice-ocean model to simulate Hg cycling in the Arctic comprehensively. Our results indicate that oceanic evasion is the dominant source (~80%) of the summer Hg rebound, particularly driven by seawater Hg release facilitated by seasonal ice melt (~42%), with further contributions from anthropogenic deposition and terrestrial re-emissions.

View Article and Find Full Text PDF

The liverwort Arnellia fennica has a circumarctic distribution with disjunct and scarce localities in the Alps, Carpathians, and Pyrenees. Within the Carpathians, it is only known from the Tatra Mountains (in Poland), where so far only four occurrences have been documented in the forest belt of the limestone part of the Western Tatras. The species is considered a tertiary relict, which owes its survival during the last glaciation period to low-lying locations in areas not covered by ice.

View Article and Find Full Text PDF

Eccentric planets may spend a significant portion of their orbits at large distances from their host stars, where low temperatures can cause atmospheric CO to condense out onto the surface, similar to the polar ice caps on Mars. The radiative effects on the climates of these planets throughout their orbits would depend on the wavelength-dependent albedo of surface CO ice that may accumulate at or near apoastron and vary according to the spectral energy distribution of the host star. To explore these possible effects, we incorporated a CO ice-albedo parameterization into a one-dimensional energy balance climate model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!