In plants, bZIP (basic leucine zipper) transcription factors regulate diverse processes such as development and stress responses. However, few of these transcription factors have been functionally characterized in maize (). In this study, we characterized the bZIP transcription factor gene from maize. was differentially expressed in various organs of maize and was induced by high salinity, drought, heat, cold, and abscisic acid treatment in seedlings. A transactivation assay in yeast demonstrated that ZmbZIP4 functioned as a transcriptional activator. A genome-wide screen for ZmbZIP4 targets by immunoprecipitation sequencing revealed that ZmbZIP4 could positively regulate a number of stress response genes, such as , , , , , , and , and some abscisic acid synthesis-related genes, including , , , and In addition, targets some root development-related genes, including , , , , , and , and overexpression of resulted in an increased number of lateral roots, longer primary roots, and an improved root system. Increased abscisic acid synthesis by overexpression of also can increase the plant's ability to resist abiotic stress. Thus, ZmbZIP4 is a positive regulator of plant abiotic stress responses and is involved in root development in maize.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181033PMC
http://dx.doi.org/10.1104/pp.18.00436DOI Listing

Publication Analysis

Top Keywords

abscisic acid
12
root development
8
transcription factors
8
stress responses
8
genes including
8
abiotic stress
8
zmbzip4
5
stress
5
maize
5
zmbzip4 contributes
4

Similar Publications

Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes.

View Article and Find Full Text PDF

Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis.

Dev Cell

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis.

View Article and Find Full Text PDF

Transcription factor ABF3 modulates salinity stress-enhanced jasmonate signaling in .

Plant Divers

November 2024

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.

Salinity is a severe abiotic stress that affects plant growth and yield. Salinity stress activates jasmonate (JA) signaling in , but the underlying molecular mechanism remains to be elucidated. In this study, we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1 (COI1)-mediated JA signaling for this process.

View Article and Find Full Text PDF

Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.

View Article and Find Full Text PDF

Correction to "Rapeseed PP2C37 Interacts with PYR/PYL Abscisic Acid Receptors and Negatively Regulates Drought Tolerance".

J Agric Food Chem

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, People's Republic of China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!