AI Article Synopsis

  • The study examines two fermented whey supplements, Lacto-Whey (LW) and GlucoBoost (GB), focusing on their impacts on nitrogen and fatty acid production in dairy nutrition.
  • In both trials, the influence of these supplements on volatile fatty acid (VFA) production was assessed, but no significant differences were found in total VFA production.
  • Results indicated that while LW enhanced lactate and propionate levels shortly after feeding, GB positively affected the proportions of propionate and butyrate, suggesting certain benefits in nitrogen assimilation and VFA composition without affecting overall production.

Article Abstract

Supplements investigated throughout the present study are produced by fermenting lactose that is present in whey to lactate, yielding products differing in ammonium relative to lactate concentrations and in physical form (liquid or dry). Trials 1 and 2 investigated Lacto-Whey (LW; Fermented Nutrition Corp., Luxemburg, WI) and GlucoBoost (GB; Fermented Nutrition Corp.), respectively, using dual-flow continuous culture systems (n = 4), each with a 4 × 4 Latin square design. A greater proportion of nonprotein nitrogen was present in GB than in LW. In trial 1, the treatment with LW was isonitrogenously dosed against soybean meal (SBM) as a control (no LW) and factorialized with either a wheat- or corn-based concentrate (55% inclusion rate, dry matter basis). We hypothesized that LW would increase propionate production and that the combination of +LW with wheat would increase bacterial assimilation of NH-N into cellular N. No differences were observed for total volatile fatty acid (VFA) production per day. However, treatment × time interactions revealed that +LW increased lactate concentration at 0, 0.5, and 1 h and tended to increase molar percentage of propionate at 1 and 1.5 h postfeeding, documenting the immediate availability of lactate converted to propionate in the +LW treatments. The main effect of corn increased the proportion of bacterial N derived from NH-N. Trial 2 was designed to investigate GB; isonitrogenous treatments included an SBM control, crystal GB, liquid GB (LGB), and LGB with yeast culture, which were dosed twice daily. We hypothesized that GB would increase propionate production and bacterial assimilation of NH-N; the combination of LGB and yeast culture was expected to have a positive additive effect, yielding the greatest VFA production and bacterial NH-N assimilation. No differences were observed for total VFA production; however, LGB decreased molar percentage of acetate and increased propionate and butyrate molar percentages. There were no differences in non-NH-N flow or microbial N flow. Under the conditions of our studies, lactate in LW and GB was fermented extensively to propionate, and microbial protein synthesis in these treatments was comparable with that in SBM controls.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2017-14358DOI Listing

Publication Analysis

Top Keywords

bacterial assimilation
12
vfa production
12
dual-flow continuous
8
continuous culture
8
fermented nutrition
8
nutrition corp
8
sbm control
8
hypothesized increase
8
increase propionate
8
propionate production
8

Similar Publications

Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity.

Biol Trace Elem Res

January 2025

Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.

The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.

View Article and Find Full Text PDF

Microplastics (MP) have aroused increasing concern due to the negative environmental impact. However, the impact of bio/non-biodegradable MPs on the sludge composting process has not been thoroughly investigated. This study examined antibiotic resistance genes (ARGs), virulence factors (VFs), and microbial community functions in sludge compost with the application of polylactic acid (PLA) and polypropylene (PP), using metagenomic sequencing.

View Article and Find Full Text PDF

Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.

Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.

View Article and Find Full Text PDF

Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.

View Article and Find Full Text PDF

Bile salt hydrolase (BSH), a probiotic-related enzyme with cholesterol-assimilating and anti-hypercholesterolemic abilities, has been isolated from intestinal bacteria; however, BSH activity of bacteria in bile-salt-free (non-intestinal) environments is largely unknown. Here, we aimed to identify BSH from non-intestinal and characterize its enzymatic function. We successfully isolated a plasmid-encoded () from , and the recombinant EfpBSH showed BSH activity that preferentially hydrolyzed taurine-conjugated bile salts, unlike the activity of known BSHs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!