Background: +Gz tolerance is traditionally determined in centrifuges with open-loop G control, i.e., the centrifuge is under operator control (open loop), and thus the test subject is unable to influence the Gz load. In modern centrifuges, however, the subject is commonly able to continuously control the Gz load (closed loop). It is a widespread opinion among fighter pilots that +Gz tolerance is higher under closed- than open-loop G control. The aims were to investigate whether +Gz tolerance is higher in closed- than open-loop G control, and whether it is possible to use closed-loop G control during precise determination of +Gz tolerance.

Methods: Relaxed +Gz tolerance was determined in eight men during rapid Gz-onset rate (ROR) under three conditions: 1) OL-VFB, open loop with visual feedback; 2) OL-NFB, open loop with no visual feedback; and 3) CL, closed loop. Straining +Gz tolerance was determined in 10 men during ROR in OL and CL conditions.

Results: Relaxed +Gz tolerance did not differ between CL (3.66 Gz), OL-VFB (3.70 Gz) and OL-NFB (3.64 Gz). Straining +Gz tolerance was similar in the CL (8.5 Gz) and OL (8.6 Gz) conditions. In the CL condition, the Gz load varied substantially and was on average lower than in the OL conditions, at any stipulated G-time profile.

Discussion: There is no systematic difference in relaxed or straining +Gz tolerance as determined in closed- vs. open-loop G-controlled systems. During closed-loop control, precision and reproducibility are too low to recommend it for accurate determination of relaxed G tolerance.Grönkvist M, Levin B, Eiken O. G tolerance during open- vs. closed-loop G-time control. Aerosp Med Hum Perform. 2018; 89(9):798-804.

Download full-text PDF

Source
http://dx.doi.org/10.3357/AMHP.5096.2018DOI Listing

Publication Analysis

Top Keywords

+gz tolerance
32
open-loop control
12
open loop
12
closed- open-loop
12
tolerance determined
12
straining +gz
12
tolerance
10
control
9
+gz
9
tolerance open-
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!