On average 8,000 pork derived products are annually confiscated by Customs and Border Protection at the United States (US) ports of entry such as international airports, harbours or mail offices. These swine products with unknown sanitary status could pose a risk for foreign animal diseases introduction into the US. This study aimed at analysing the risk of African swine fever virus (ASFV) and classical swine fever virus (CSFV) being introduced into the US through prohibited swine products carried by air passengers (PSPAP) and identifying locations and time periods at higher risk where and when preventive and mitigation measures should be implemented. Our results estimated that the risk for CSFV entry was seven times higher and further spread between US airports than for ASFV. Specifically, the overall mean annual probability of ASFV entry was estimated as 0.061 at 95% confidence interval (CI) [0.007, 0.216] while the probability of CSFV entry was estimated as 0.414 (95% CI [0.074, 1]). For both diseases, July and May were the months at highest risk for entry. For ASFV, the origin countries of those PSPAP that represented the highest risk (above 70% of the total risk) were Ghana, Cape Verde, Ethiopia and the Russian Federation, while for CSFV above 90% of the risk at origin was concentrated in the Dominican Republic and Cuba, followed by India, Colombia, Peru, Ecuador and China. These results could be used to implement and feed real time surveillance systems, which could potentially help customs to increase the detection rate of smuggled products, indicating when and where to look for them. Similarly, these systems could be adapted and implemented to other diseases improving the cost-effectiveness of the resources invested in preventing entrance of diseases via air passengers' luggage.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tbed.12996DOI Listing

Publication Analysis

Top Keywords

swine fever
16
swine products
12
african swine
8
classical swine
8
united states
8
products carried
8
carried air
8
air passengers'
8
risk
8
fever virus
8

Similar Publications

Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.

View Article and Find Full Text PDF

The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses.

View Article and Find Full Text PDF

Assessing Virus Survival in African Swine Fever Virus-Contaminated Materials-Implications for Indirect Virus Transmission.

Viruses

January 2025

Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.

Introduction of African swine fever virus (ASFV) into pig herds can occur via virus-contaminated feed or other objects. Knowledge about ASFV survival in different matrices and under different conditions is required to understand indirect virus transmission. Maintenance of ASFV infectivity can occur for extended periods outside pigs.

View Article and Find Full Text PDF

Genome-Wide Approach Identifies Natural Large-Fragment Deletion in ASFV Strains Circulating in Italy During 2023.

Pathogens

January 2025

National Reference Laboratory (NRL) for Swine Fever, Istituto Zooprofilattico Sperimentale dell' Umbria e delle Marche "Togo Rosati", 06126 Perugia, Italy.

African swine fever (ASF), characterized by high mortality rates in infected animals, remains a significant global veterinary and economic concern, due to the widespread distribution of ASF virus (ASFV) genotype II across five continents. In this study, ASFV strains collected in Italy during 2022-2023 from two geographical clusters, North-West (Alessandria) and Calabria, were fully sequenced. In addition, an in vivo experiment in pigs was performed.

View Article and Find Full Text PDF

Molecular Mechanism of VSV-Vectored ASFV Vaccine Activating Immune Response in DCs.

Vet Sci

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China.

The vesicular stomatitis virus (VSV)-vectored African swine fever virus (ASFV) vaccine can induce efficient immune response, but the potential mechanism remains unsolved. In order to investigate the efficacy of recombinant viruses (VSV-p35, VSV-p72)-mediated dendritic cells (DCs) maturation and the mechanism of inducing T-cell immune response, the functional effects of recombinant viruses on DC activation and target antigens presentation were explored in this study. The results showed that surface-marked molecules (CD80, CD86, CD40, and MHC-II) and secreted cytokines (IL-4, TNF-α, IFN-γ) were highly expressed in the recombinant virus-infected DCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!