AI Article Synopsis

  • Cotton is a vital crop, but its yield can be severely affected by issues like boll shedding, which can be influenced by the chemical ethephon that promotes cell separation.
  • Researchers created two small RNA libraries from cotton pedicels treated with ethephon or water, generating over 114 million clean reads and identifying a total of 460 mature miRNAs, including both known and novel types.
  • The study predicts potential target genes for these miRNAs, primarily related to auxin response factors and oxidative processes, suggesting that they may play a critical role in regulating the cell separation linked to boll shedding.

Article Abstract

Cotton is one of the most important economic crops and its production is influenced by various adverse factors. Boll shedding at an inappropriate period causes the severe loss of cotton yield. Ethephon can promote the formation of abscission layer cells, resulting in boll shedding. To genome-widely investigate the differentially expressed miRNAs involved in the formation of abscission layer cells, two sRNA libraries were constructed using abscission tissues of cotton pedicels treated with ethephon or water. A total of 55,264,755 and 59,069,866 clean reads were generated in two libraries. 460 mature miRNAs were identified, including 301 known miRNAs and 159 novel miRNAs. Among them, one known gra-MIR530b and seven novel miRNAs (gar-novel-miR88-3p/gra-novel-miR8-3p, gar-novel-miR16-5p, gar-novel-miR100-3p, gar-novel-miR75-3p/gra-novel-miR92-3p,gar-novel-miR32-5p/gra-novel-miR30-5p, gar-novel-miR9-5p and gra-novel-miR61-3p) were expressed differentially in abscission tissues. Seven-two genes were predicted as potential targets of the eight miRNAs. Gene ontology (GO) analyses revealed that most of these target genes are auxin response factors (ARFs), GTPase activators, and the regulators of oxidative phosphorylation and photosynthesis. Hence, we speculate that these miRNAs might regulate cell separation and aging to affect the formation of bscission layer cells. Our findings will provide a new insight into the regulatory mechanism of miRNAs involved in boll shedding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2018.08.057DOI Listing

Publication Analysis

Top Keywords

layer cells
16
abscission layer
12
boll shedding
12
mirnas
9
differentially expressed
8
expressed mirnas
8
formation abscission
8
mirnas involved
8
abscission tissues
8
novel mirnas
8

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

Easily Water-Synthesisable Iron-Chloranilate Frameworks as High Energy and High-Power Cathodes for Sustainable Alkali-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.

Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.

View Article and Find Full Text PDF

Background/ Aims: To analyze the longitudinal change in Bruch's membrane opening minimal rim width (BMO-MRW) and peripapillary retinal nerve fiber layer (pRNFL) thickness using optical coherence tomography (OCT) after implantation of a PRESERFLO® microshunt for surgical glaucoma management in adult glaucoma patients.

Methods: Retrospective data analysis of 59 eyes of 59 participants undergoing implantation of a PRESERFLO microshunt between 2019 and 2022 at a tertiary center for glaucoma management. Surgical management included primary temporary occlusion of the glaucoma shunt to prevent early hypotony.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!