Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The hypothalamus is a critical center for regulating heat retention or dissipation. This study investigated global protein changes in the hypothalamus of broiler-type Taiwan country chickens (TCCs) after acute heat stress. Twelve TCC hens aged 30 weeks were allocated to groups subjected to acute heat stress at 38°C for 2 hr without recovery, with 2 hr of recovery, and with 6 hr of recovery; a control group was maintained at 25°C. Hypothalami were collected for protein expression analysis at the end of each time point. The results showed 114 protein spots differentially expressed after acute heat stress. Most of the differentially expressed proteins were involved in cellular processes, metabolism, transport, and cellular component organization. Functional annotation analysis suggested that these proteins were related to cellular defensive responses against heat and oxidative stress, detoxification and toxin export/delivery, cytoskeleton integrity, oxygen transport, and neural development. The results of this study suggest that acute heat stress damages the hypothalamus of broiler-type TCCs through oxidative stress and provokes a series of responses to stabilize protein structures, degrade misfolded proteins, and remodel cytoskeletons for attenuating the detrimental effects by acute heat stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/asj.13060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!