Detecting Wheat Powdery Mildew and Predicting Grain Yield Using Unmanned Aerial Photography.

Plant Dis

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Published: October 2018

High-resolution aerial imaging with an unmanned aerial vehicle (UAV) was used to quantify wheat powdery mildew and estimate grain yield. Aerial digital images were acquired at Feekes growth stage (GS) 10.5.4 from flight altitudes of 200, 300, and 400 m during the 2009-10 and 2010-11 seasons; and 50, 100, 200, and 300 m during the 2011-12, 2012-13, and 2013-14 seasons. The image parameter lgR was consistently correlated positively with wheat powdery mildew severity and negatively with wheat grain yield for all combinations of flight altitude and year. Fitting the data with random coefficient regression models showed that the exact relationship of lgR with disease severity and grain yield varied considerably from year to year and to a lesser extent with flight altitude within the same year. The present results raise an important question about the consistency of using remote imaging information to estimate disease severity and grain yield. Further research is needed to understand the nature of interyear variability in the relationship of remote imaging data with disease or grain yield. Only then can we determine how the remote imaging tool can be used in commercial agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-12-17-1893-REDOI Listing

Publication Analysis

Top Keywords

grain yield
24
wheat powdery
12
powdery mildew
12
remote imaging
12
unmanned aerial
8
200 300
8
flight altitude
8
altitude year
8
disease severity
8
severity grain
8

Similar Publications

The NAT1-bHLH110-CER1/CER1L module regulates heat stress tolerance in rice.

Nat Genet

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China.

Rice production is facing substantial threats from global warming associated with extreme temperatures. Here we report that modifying a heat stress-induced negative regulator, a negative regulator of thermotolerance 1 (NAT1), increases wax deposition and enhances thermotolerance in rice. We demonstrated that the C2H2 family transcription factor NAT1 directly inhibits bHLH110 expression, and bHLH110 directly promotes the expression of wax biosynthetic genes CER1/CER1L under heat stress conditions.

View Article and Find Full Text PDF

Multi-environment field trials for wheat yield, stability and breeding progress in Germany.

Sci Data

January 2025

Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.

Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.

View Article and Find Full Text PDF

Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.

Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.

View Article and Find Full Text PDF

Fusarium stalk rot is the main factor reducing the quality of maize grain and leads to significant yield losses, which that ranges from 20 to 100%, depending on the degree of infection and weather conditions. Understanding its genetic mechanism is key to improving grain quality and ultimate yield. An experiment with 26 doubled haploid (DH) lines of maize was conducted in the northern part of the Lower Silesia Province in Poland over a ten-year period (2013-2022).

View Article and Find Full Text PDF

FvPHR1 Improves the Quality of Woodland Strawberry Fruit by Up-Regulating the Expression of FvPHT1;7 and FvSWEET9.

Plant Cell Environ

January 2025

Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China.

Article Synopsis
  • Phosphorus is crucial for plant growth, but excessive fertilizer use can lead to environmental issues; plants manage phosphate supply through intricate signaling pathways.
  • The study focused on the role of PHR1 in Fragaria vesca (strawberries), showing that overexpressing the FvPHR1 gene enhances phosphate uptake and photosynthesis efficiency by activating specific downstream genes.
  • FvPHR1 also aids in sugar transport from leaves to fruit, suggesting its complex role in improving strawberry fruit quality and providing insights for developing better cultivars with efficient phosphorus utilization and higher sugar content.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!