Pentatricopeptide repeat (PPR) proteins are a large family of helical repeat proteins that bind RNA in mitochondria and chloroplasts. Sites of PPR action have been inferred primarily from genetic data, which have led to the view that most PPR proteins act at a very small number of sites in vivo. Here, we report new functions for three chloroplast PPR proteins that had already been studied in depth. Maize PPR5, previously shown to promote trnG splicing, is also required for rpl16 splicing. Maize PPR10, previously shown to bind the atpI-atpH and psaJ-rpl33 intercistronic regions, also stabilizes a 3'-end downstream from psaI. Arabidopsis PGR3, shown previously to bind upstream of petL, also binds the rpl14-rps8 intercistronic region where it stabilizes a 3'-end and stimulates rps8 translation. These functions of PGR3 are conserved in maize. The discovery of new functions for three proteins that were already among the best characterized members of the PPR family implies that functional repertoires of PPR proteins are more complex than have been appreciated. The diversity of sequences bound by PPR10 and PGR3 in vivo highlights challenges of predicting binding sites of native PPR proteins based on the amino acid code for nucleotide recognition by PPR motifs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212717 | PMC |
http://dx.doi.org/10.1093/nar/gky737 | DOI Listing |
Viruses
November 2024
College of Veterinary Science, Assam Agricultural University, Guwahati 781022, Assam, India.
Vet Med Sci
January 2025
Chongqing Three Gouges Vocational College, College of Animal Science & Technology, Wanzhou, China.
Peste des petits ruminants virus (PPRV), a single-stranded negative-sense RNA virus with an envelope, belongs to the Morbillivirus in the Paramyxoviridae family and is prevalent worldwide. PPRV infection causes fever, stomatitis, diarrhoea, pneumonia, abortion and other symptoms in small ruminants, with a high mortality rate that poses a significant threat to the sustainability and productivity of the small ruminant livestock sector. The PPRV virus particles have a diameter of approximately 400-500 nm and are composed of six structural proteins: nucleocapsid protein (N), phosphoprotein (P), envelope matrix protein (M), fusion protein (F), haemagglutinin protein (H) and large protein (L).
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States.
Plants make pyrimidine base substitutions in organellar mRNAs through the action of sequence-specific nuclear-encoded enzymes. Pentatricopeptide repeat (PPR) proteins are essential for ensuring specificity, while the enzymatic DYW domain is often present at the C-terminus of a PPR protein and dependent on the variant possessing C-to-U and/or U-to-C RNA editing activities. Expression of exogenous DYW-KP variant enzymes in bacteria leads to the modification of RNAs suggestive of U-to-C base changes.
View Article and Find Full Text PDFPlant Commun
December 2024
Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, where they play a vital role in plant growth, development, cytoplasmic male sterility (CMS) restoration, and response to biotic and abiotic stresses. Through research in the last three decades, PPR functions and the primary mechanisms by which PPR proteins mediate post-transcriptional processing have been uncovered. Here, we aim to summarize the advances in PPR research with highlighting on the mechanisms of how PPR proteins mediate RNA editing, intron splicing, and RNA maturation in the context of their role in organellar gene expression.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China. Electronic address:
Delta opioid receptors (DORs) are widely expressed throughout the central nervous system, including the cerebellum, where they play a regulatory role in neurogenesis. In the cerebellar cortex, Purkinje cells (PCs), the sole output neurons, receive glutamatergic synaptic input from parallel fibers (PFs)-the axonal extensions of granule cells-forming PF-PC synapses. However, the precise distribution of DORs within these synapses and their impact on synaptic transmission remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!