Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that has a strong genetic component. Disruptions of FOXP1, a transcription factor expressed in the developing cerebral cortex, were associated with ASD. FOXP1(R525X) is a de novo heterozygous mutation found in patients with autism and severe mental retardation. To explore the neuronal basis of FOXP1(R525X) in ASD, we created Foxp1(R521X), a mouse homolog of the human variant. Ectopic expression of Foxp1(R521X) led to cytoplasmic aggregates and activated macroautophagy in neuroblastoma N2a cells and the developing neuronal cells. Cortical neurons expressing Foxp1(R521X) exhibited delayed migration and altered dendritic morphology. As a control, mutant Y435X that was expressed diffusively in the cytoplasm did not induce autophagy and migration delay in the cortex. The embryonic cortical cells had a minimal activity of nonsense-mediated mRNA decay (NMD) as assayed by a splicing-dependent NMD reporter. We hypothesize that the developing neuronal cells use autophagy but not NMD as a safeguard mechanism against nonsense mutant aggregates, resulting in impairment of the cortical development. This study suggests a novel mechanism other than heterozygous loss of FOXP1 for the development of ASD and may advance our understanding of the complex relationships between gene mutation and the related psychiatric disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhy185 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.
The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.
View Article and Find Full Text PDFCells
January 2025
Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA.
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!