AI Article Synopsis

Article Abstract

[This corrects the article DOI: 10.1039/C5SC01463H.].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063148PMC
http://dx.doi.org/10.1039/c5sc90069gDOI Listing

Publication Analysis

Top Keywords

correction conformational
4
conformational changes
4
changes amyloid-beta
4
amyloid-beta 12-28
4
12-28 alloforms
4
alloforms studied
4
studied action-fret
4
action-fret ims
4
ims molecular
4
molecular dynamics
4

Similar Publications

Protein Target Search Diffusion-association/dissociation Free Energy Landscape around DNA Binding Site with Flanking Sequences.

Biophys J

January 2025

Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA. Electronic address:

In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements.

View Article and Find Full Text PDF

In a phylogeny, trustworthy reliability branch support estimates are as important as the tree itself. We show that reliability support values based on bootstrapping can be improved by combining sequence and structural information from proteins. Our approach relies on the systematic comparison of homologous intra-molecular structural distances.

View Article and Find Full Text PDF

PPDock: Pocket Prediction-Based Protein-Ligand Blind Docking.

J Chem Inf Model

January 2025

Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China.

Predicting the docking conformation of a ligand in the protein binding site (pocket), i.e., protein-ligand docking, is crucial for drug discovery.

View Article and Find Full Text PDF

Pretrained Deep Neural Network Kin-SiM for Single-Molecule FRET Trace Idealization.

J Phys Chem B

January 2025

Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.

Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.

View Article and Find Full Text PDF

Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!