The ambrosia beetle, Platypus quercivorus (Murayama), is the vector of a fungal pathogen that causes mass mortality of Fagaceae trees (Japanese oak wilt). Therefore, knowing the dispersal capacity may help inform trapping/tree removal efforts to prevent this disease more effectively. In this study, we measured the flight velocity and duration and estimated the flight distance of the beetle using a newly developed flight mill. The flight mill is low cost, small, and constructed using commonly available items. Both the flight mill arm and its vertical axis comprise a thin needle. A beetle specimen is glued to one tip of the arm using instant glue. The other tip is thick due to being covered with plastic, thus it facilitates the detection of rotations of the arm. The revolution of the arm is detected by a photo sensor mounted on an infrared LED, and is indicated by a change in the output voltage when the arm passed above the LED. The photo sensor is connected to a personal computer and the output voltage data are stored at a sampling rate of 1 kHz. By conducting experiments using this flight mill, we found that P. quercivorus can fly at least 27 km. Because our flight mill comprises cheap and small ordinary items, many flight mills can be prepared and used simultaneously in a small laboratory space. This enables experimenters to obtain a sufficient amount of data within a short period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126643PMC
http://dx.doi.org/10.3791/57468DOI Listing

Publication Analysis

Top Keywords

flight mill
24
flight
9
ambrosia beetle
8
beetle platypus
8
platypus quercivorus
8
quercivorus murayama
8
items flight
8
photo sensor
8
output voltage
8
mill
6

Similar Publications

Enhanced flight performance in hoverfly migrants.

iScience

December 2024

Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, UK.

Article Synopsis
  • Many animals, including the marmalade hoverfly, migrate seasonally, which affects their flight characteristics.
  • The study found that migratory hoverflies can fly twice as far as non-migratory ones, with body condition playing a crucial role.
  • Hoverflies with more fat can fly almost five times farther than those with less fat, highlighting the significance of energy stores for long-distance migration.
View Article and Find Full Text PDF

(Linnaeus) is an important agricultural pest with a strong ability to move and spread between hosts. However, ' flight potential and factors affecting its flight ability are unclear. We used the insect flight information system (flight mill) to determine the effects of temperature, humidity, age, sex, and mating on ' flight ability in an artificial climate chamber.

View Article and Find Full Text PDF

A rapid, simple, effective, and green method for the determination of betaine and trigonelline from Mill. (LCM) and the quantification of the trigonelline in coffee was proposed and validated by matrix-assisted laser desorption ionization time-of-flight mass spectrometric (MALDI-TOF MS) detection. Due to without chromatographic separation, the method greatly shortened the detection time.

View Article and Find Full Text PDF

Olive mill wastewater (OMWW), with its high level of phenolic compounds, simultaneously represents a serious environmental challenge and a great resource with potential nutraceutical activities. To increase the knowledge of OMWW's biological effects, with an aim to developing a food supplement, we performed a chemical characterisation of the extract using the Liquid Chromatography-Quadrupole Time-of-flight spectrometry (LC-QTOF) and an in vitro genotoxicity/antigenotoxicity assessment on HepaRG ™ cells. Chemical analysis revealed that the most abundant phenolic compound was hydroxytyrosol.

View Article and Find Full Text PDF

Fall armyworm (FAW), (J.E. Smith), a threat to maize production systems, is a polyphagous pest of global significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!