Speech Auditory Brainstem Responses: Effects of Background, Stimulus Duration, Consonant-Vowel, and Number of Epochs.

Ear Hear

Manchester Centre for Audiology and Deafness, Division of Human Communication, Development & Hearing, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom.

Published: December 2019

Objectives: The aims of this study were to systematically explore the effects of stimulus duration, background (quiet versus noise), and three consonant-vowels on speech-auditory brainstem responses (ABRs). Additionally, the minimum number of epochs required to record speech-ABRs with clearly identifiable waveform components was assessed. The purpose was to evaluate whether shorter duration stimuli could be reliably used to record speech-ABRs both in quiet and in background noise to the three consonant-vowels, as opposed to longer duration stimuli that are commonly used in the literature. Shorter duration stimuli and a smaller number of epochs would require shorter test sessions and thus encourage the transition of the speech-ABR from research to clinical practice.

Design: Speech-ABRs in response to 40 msec [da], 50 msec [ba] [da] [ga], and 170 msec [ba] [da] [ga] stimuli were collected from 12 normal-hearing adults with confirmed normal click-ABRs. Monaural (right-ear) speech-ABRs were recorded to all stimuli in quiet and to 40 msec [da], 50 msec [ba] [da] [ga], and 170 msec [da] in a background of two-talker babble at +10 dB signal to noise ratio using a 2-channel electrode montage (Cz-Active, A1 and A2-reference, Fz-ground). Twelve thousand epochs (6000 per polarity) were collected for each stimulus and background from all participants. Latencies and amplitudes of speech-ABR peaks (V, A, D, E, F, O) were compared across backgrounds (quiet and noise) for all stimulus durations, across stimulus durations (50 and 170 msec) and across consonant-vowels ([ba], [da], and [ga]). Additionally, degree of phase locking to the stimulus fundamental frequency (in quiet versus noise) was evaluated for the frequency following response in speech-ABRs to the 170 msec [da]. Finally, the number of epochs required for a robust response was evaluated using Fsp statistic and bootstrap analysis at different epoch iterations.

Results: Background effect: the addition of background noise resulted in speech-ABRs with longer peak latencies and smaller peak amplitudes compared with speech-ABRs in quiet, irrespective of stimulus duration. However, there was no effect of background noise on the degree of phase locking of the frequency following response to the stimulus fundamental frequency in speech-ABRs to the 170 msec [da]. Duration effect: speech-ABR peak latencies and amplitudes did not differ in response to the 50 and 170 msec stimuli. Consonant-vowel effect: different consonant-vowels did not have an effect on speech-ABR peak latencies regardless of stimulus duration. Number of epochs: a larger number of epochs was required to record speech-ABRs in noise compared with in quiet, and a smaller number of epochs was required to record speech-ABRs to the 40 msec [da] compared with the 170 msec [da].

Conclusions: This is the first study that systematically investigated the clinical feasibility of speech-ABRs in terms of stimulus duration, background noise, and number of epochs. Speech-ABRs can be reliably recorded to the 40 msec [da] without compromising response quality even when presented in background noise. Because fewer epochs were needed for the 40 msec [da], this would be the optimal stimulus for clinical use. Finally, given that there was no effect of consonant-vowel on speech-ABR peak latencies, there is no evidence that speech-ABRs are suitable for assessing auditory discrimination of the stimuli used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493675PMC
http://dx.doi.org/10.1097/AUD.0000000000000648DOI Listing

Publication Analysis

Top Keywords

number epochs
32
msec [da]
32
170 msec
28
stimulus duration
20
background noise
20
epochs required
16
record speech-abrs
16
[ba] [da]
16
[da] [ga]
16
peak latencies
16

Similar Publications

Background: Analysis of neuroimaging data based on convolutional neural networks (CNNs) can improve detection of clinically relevant characteristics of patients with Alzheimer's disease (AD). Previously, our group developed a CNN-based approach for detecting AD via magnetic resonance imaging (MRI) scans and for identifying features that are relevant to the decision of the network. In the current study, we aimed to evaluate the potential utility of applying this approach to MRI scans to assist in the identification of individuals at high risk for amyloid positivity to aid in the selection of study samples and case finding for treatment.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Background: BACE inhibitors, while effective in lowering amyloid-beta production, have been associated with mild cognitive worsening in clinical trials. Additional treatment-related adverse events reported in multiple clinical trials were sleep disturbances and insomnia. The purpose of this study is to determine if sleep disturbances occur in mice receiving BACE inhibitor, if sleep disturbances correlate with cognitive impairment, and the mechanism by which this may occur.

View Article and Find Full Text PDF

Background: Analysis of neuroimaging data based on convolutional neural networks (CNNs) can improve detection of clinically relevant characteristics of patients with Alzheimer's disease (AD). Previously, our group developed a CNN-based approach for detecting AD via magnetic resonance imaging (MRI) scans and for identifying features that are relevant to the decision of the network. In the current study, we aimed to evaluate the potential utility of applying this approach to MRI scans to assist in the identification of individuals at high risk for amyloid positivity to aid in the selection of study samples and case finding for treatment.

View Article and Find Full Text PDF

Background: We implemented a quality improvement project to transition from routine cerebrospinal fluid (CSF) sampling to indication-based sampling in aneurysmal subarachnoid hemorrhage (aSAH) patients with an external ventricular drain (EVD).

Methods: Forty-seven patients were assessed across 2 epochs: routine (n=22) and indication-based (n=25) CSF sampling. The primary outcome was the number of CSF samples, and secondary outcomes included cost reductions and ventriculostomy-associated infections.

View Article and Find Full Text PDF

Cognitive-behavioural therapy for insomnia mechanism of action: Exploring the homeostatic K-complex involvement.

J Sleep Res

December 2024

Vita-Salute San Raffaele University, Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Article Synopsis
  • This study investigates how K-complexes (KC), a specific type of brainwave, relate to the effectiveness of Cognitive-Behavioral Therapy for Insomnia (CBT-I), which is the main treatment for chronic insomnia.
  • Researchers conducted a multicenter study with 98 insomnia patients undergoing a 6-8 week CBT-I program, evaluating their sleep using polysomnography and an insomnia severity index before and after treatment.
  • The results indicate that KC density, particularly its change after treatment, can predict how well patients respond to CBT-I and significantly correlates with improved sleep pressure, suggesting KC is an important biomarker for insomnia treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!