Research on the deposition of inhalable particles in the alveoli of the lungs is important to the causes, development for common respiratory diseases such as emphysema, and even the optimization of clinical treatment and prevention programs of them. In this paper, an experimental model was established to simulate the deposition of terminal bronchioles and pulmonary acinus particles. The deposition rate of inhalable particles with different particle sizes in the pulmonary acinus was studied under different functional residual capacity. The results showed that the particle diameter was an important factor affecting the deposition of particles in the lung alveoli. Particles with 1 μm diameter had the highest deposition rate. With the functional residual capacity increasing, particulate deposition rate significantly reduced. The results of this study may provide data support and optimization strategy for target inhalation therapy of respiratory diseases such as emphysema and pneumoconiosis. The established model may also provide a feasible experimental model for studying the deposition of inhalable particles in the pulmonary alveoli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935126 | PMC |
http://dx.doi.org/10.7507/1001-5515.201711054 | DOI Listing |
Environ Toxicol Chem
January 2025
Division of Analytical Chemistry and Environmental Geochemistry, Institute of Chemistry, Jan Kochanowski University, Kielce, Poland.
Occurrence of microplastics in the environment is well studied, but our knowledge of their distribution in specific locations, such as the sandboxes, which are integral parts of popular playgrounds for children, is limited. Pioneering research on the factors affecting the microplastic pollution of sandboxes in urban residential areas was conducted within three estates in Kielce, Poland. Sand samples (Σ27) were collected from nine sandboxes and examined for the presence of microplastics, using a simple quality control methodology proposed by the authors.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium.
Exposure of lung epithelia to aerosols is omnipresent. Chronic exposure to polluted air is a significant factor in the development of pulmonary diseases, which are among the top global causes of death, including COVID-19, chronic obstructive pulmonary disease, lung cancer, and tuberculosis. As efforts to prevent and treat lung diseases increase, the development of pulmonary drug delivery systems has become a major area of interest.
View Article and Find Full Text PDFNeurophotonics
January 2025
University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States.
Significance: Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside.
Aim: We aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents.
Antiviral Res
January 2025
CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France.
Nipah virus (NiV) is a lethal zoonotic paramyxovirus that can be transmitted from person to person through the respiratory route. There are currently no licensed vaccines or therapeutics. A lipopeptide-based fusion inhibitor was developed and previously evaluated for efficacy against the NiV-Malaysia strain.
View Article and Find Full Text PDFNanotoxicology
January 2025
Infection, Inflammation and Repair, Faculty of Medicine, University of Southampton, Southampton, UK.
The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!