Modeling the Metabolic State of Upon Infection.

Front Cell Infect Microbiol

Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands.

Published: August 2019

Genome-scale metabolic models of (Mtb), the causative agent of tuberculosis, have been envisioned as a platform for drug discovery. By systematically probing the networks that underpin such models, the reactions that are essential for Mtb are identified. A majority of these reactions are catalyzed by enzymes and thus represent candidate drug targets to fight an Mtb infection. Nevertheless, this is complicated by the limited knowledge on the environment that Mtb encounters during infection. Modeling the behavior of the bacteria during infection requires knowledge of the so-called biomass reaction that represents bacterial biomass composition. This composition varies in different environments or bacterial growth phases. Accurate modeling of the metabolic state requires a precise biomass reaction for the described condition. In recent years, additional insights in the in-host environment occupied by Mtb have been gained as transcript abundance data of interacting host and pathogen have become available. Therefore, we used transcript abundance data and developed a straightforward and systematic method to obtain a condition-specific biomass reaction for Mtb during growth and during infection of its host. The method described herein is virtually free of any pre-set assumptions on uptake rates of nutrients, making it suitable for exploring environments with limited accessibility. The condition-specific biomass reaction represents the "metabolic objective" of Mtb in a given environment (in-host growth and growth on defined medium) at a specific time point, and as such allows modeling the bacterial metabolic state in these environments. Five different biomass reactions were used to predict nutrient uptake rates and gene essentiality. Predictions were subsequently compared to available experimental data. Our results show that nutrient uptake can accurately be predicted. Gene essentiality can also be predicted but accurate predictions remain difficult to obtain. In conclusion, a viable strategy to model Mtb metabolism in hard-to-access environments that is virtually free of pre-set assumptions is provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085482PMC
http://dx.doi.org/10.3389/fcimb.2018.00264DOI Listing

Publication Analysis

Top Keywords

biomass reaction
16
metabolic state
12
modeling metabolic
8
mtb
8
reaction represents
8
transcript abundance
8
abundance data
8
condition-specific biomass
8
virtually free
8
free pre-set
8

Similar Publications

Functionalized covalent organic frameworks for catalytic conversion of biomass-derived xylan to furfural.

Int J Biol Macromol

January 2025

Key Laboratory of Pulp & Paper Science and Technology of Education Ministry/State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:

A direct synthesis strategy was employed to prepare functionalized COFs enriched with acidic sites, using various precursor monomers. The functionalized COFs were applied in the catalytic conversion of biomass-derived xylan to furfural in the liquid phase. The study further assessed the recyclability and reusability of these COFs, explored the relationship between their structural features and catalytic performance, and investigated the reaction mechanism underlying the COF-catalyzed conversion of xylan to furfural.

View Article and Find Full Text PDF

Heavy metal contamination is a serious food safety issue. Herein, we report a rapid, multiplexed and naked-eye readable method for detecting heavy metal pollution in food samples using a cheap colorimetric paper, including milk. We leverage the urease catalysis reaction to amplify the presence of heavy metal ions, Hg and Pb, by exploiting their strong inhibitory effect on urease.

View Article and Find Full Text PDF

Achieving high product selectivity at ampere-level current densities is essential for the industrial application of electrochemical CO2 reduction. However, the operational stability of CO2 electrolyzers at large current density has long been hindered by flooding of gas diffusion layer (GDL). Herein, a new heteroarchitectural GDL is designed to overcome flooding.

View Article and Find Full Text PDF

Plant Cell Wall-Like Soft Materials: Micro- and Nanoengineering, Properties, and Applications.

Nanomicro Lett

January 2025

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Plant cell wall (CW)-like soft materials, referred to as artificial CWs, are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition, structure, and mechanics of plant CWs. CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure-property relationships of native plant CWs or to fabricate functional materials. Here, research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including cellulose, pectin, and hemicellulose, as well as organic polymers like lignin.

View Article and Find Full Text PDF

Nitrogenative Degradation of Polystyrene Waste.

J Am Chem Soc

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, P. R. China.

Owing to massive production and poor end-of-life management, plastic waste pollution has become one of the most pressing environmental crises. In response to the mounting crisis, the past several decades have witnessed the development of numerous methods and technologies for plastic recycling. However, most of the current recycling technologies often produce low-quality or low-value products, making it difficult to recover the operating costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!