Chronic active Epstein-Barr virus infection (CAEBV) is a lymphoproliferative disorder characterized by the clonal proliferation of EBV-infected T or NK cells and is related to severe systemic inflammation. This study aims to investigate STAT3 to elucidate the mechanism underlying the CAEBV development. We determined that STAT3 was constitutively activated in EBV-positive T- or NK-cell lines. We also determined that STAT3 was activated in the peripheral blood mononuclear cells (PBMCs) containing EBV-infected clonally proliferating T or NK cells in six of seven patients with CAEBV. We conducted direct sequencing of the Src homology 2 (SH2) domain, which has previously been reported to be mutated in T- or NK-cell neoplasms. No mutation was detected in the SH2 domain in patients with CAEBV. Next, we investigated the effects of ruxolitinib, an inhibitor of both JAK1 and JAK2, which phosphorylates and activates STAT3. Ruxolitinib suppressed the phosphorylation of STAT3 in EBV-positive T- or NK-cell lines. Ruxolitinib also decreased the viable cell number of EBV-positive T- or NK-cell lines and PBMCs from patients with CAEBV. Furthermore, ruxolitinib suppressed the production of inflammatory cytokines in the cell lines and CAEBV patient-derived cells. In conclusion, constitutively activated STAT3, which promotes survival and cytokine production, could be a therapeutic target for CAEBV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089567 | PMC |
http://dx.doi.org/10.18632/oncotarget.25780 | DOI Listing |
Sci Rep
January 2025
School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK. Electronic address:
Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates defenses against oxidants and thiol-reactive electrophiles. It is controlled at the protein stability level by several E3 ubiquitin ligases (CRL3, CRL4, SCF, and Hrd1). CRL3 is of the greatest importance because it constitutively targets Nrf2 for proteasomal degradation under homeostatic conditions but is prevented from doing so by oxidative stressors.
View Article and Find Full Text PDFSci Signal
January 2025
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.
View Article and Find Full Text PDFGenetics
January 2025
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
In the presence of stressful environments, the SKN-1 cytoprotective transcription factor is activated to induce the expression of gene targets that can restore homeostasis. However, chronic activation of SKN-1 results in diminished health and a reduction of lifespan. Here we demonstrate the necessity of modulating SKN-1 activity to maintain the longevity-promoting effects associated with genetic mutations that impair daf-2/insulin receptor signaling, the eat-2 model of dietary restriction, and glp-1-dependent loss of germ cell proliferation.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland.
Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!