Background: One of the most common problems in edentulous patients is the low stability of lower dentures. The most effective method to overcome this problem is implant-supported overdentures. After placing an implant, for the process of osseointegration to be complete and successful, it is better that patients do not use their denture for few months. This may be nonconvenient for patient because they are unable to speak and eat properly. The aim of this study was to evaluate the effect of low level laser (LLL) and light-emitting diode (LED) photobiomodulation on implant stability as well as their effect on interleukin-1 beta (IL-1β) and prostaglandin E2 (PGE2) biomarkers around implant in lower anterior region (over denture).

Materials And Methods: In this clinical trial, 36 implants were placed in fully edentulous mandibles (12 people per person - three implants in areas of midline and canine). Each of the implants was randomly placed in one of three groups of laser, LED, and control. LLL (power of 50 mw and the amount of 20 J/cm for each implant) and LED with dose (20 mw/cm) were irradiated on the day of surgery (zero), 3, 7, 10, and 14 days. The stability of implants was measured on the day of surgery and weeks 3, 4, and 8 after surgery with Periotest. The inflammatory biomarkers of IL-1β and PGE2 were also collected from gingival crevicular fluid around implants in 4 and 8 weeks. The collected data were analyzed by ANOVA statistical tests.pvalue<0.05 considered significant.

Results: The amounts of Periotest significantly increased 3 week after surgery in the control group ( < 0.001). However, the laser group and LED group were associated with minimal changes, which indicates lower stability of implant in 3 week in control group but no changes in stability of test groups (laser and LED). Laser and LED had no effect on the level of IL-1β and PGE2 in 4 and 8 weeks.

Conclusion: The use of LLL or LED has a positive effect on the stability of the implants 3 weeks after surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073945PMC

Publication Analysis

Top Keywords

light-emitting diode
8
interleukin-1 beta
8
day surgery
8
implants
6
implant
5
low-level laser
4
laser 810
4
810 light-emitting
4
diode photobiomodulation
4
photobiomodulation 626
4

Similar Publications

N-heterocyclic carbene (NHC)-based phosphorescent iridium complexes have attracted extensive attention due to their good optical properties and high stability in recent years. However, currently reported NHC-based iridium complexes can easily achieve emission of blue, green, or even ultraviolet light, while emission of red or deep-red light is relatively rare. Here, we report a new family of NHC-based deep-red iridium complexes (Ir1, Ir2, Ir3, and Ir4) featuring three-charge (0, -1, -2) ligands.

View Article and Find Full Text PDF

Design Rule of Tetradentate Ligand-Based Pt(II) Complex for Efficient Singlet Exciton Harvesting in Fluorescent Organic Light-Emitting Diodes.

J Phys Chem Lett

January 2025

School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

Controlling intermolecular interactions, such as triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA), is crucial for achieving high quantum efficiency in organic light-emitting diodes (OLEDs) by suppressing exciton loss. This study investigates the molecular design of tetradentate Pt(II) complexes used for singlet exciton harvesting in fluorescent OLEDs to elucidate the relationship between the chemical structure of the ligands and exciton quenching mechanisms. It was discovered that the bulkiness of substituents is pivotal for maximizing quantum efficiency in these devices.

View Article and Find Full Text PDF

Tunable photoluminescence and energy transfer in Dy and Eu co-doped NaCaGd(WO) phosphors for pc-WLED applications.

Dalton Trans

January 2025

Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Türkiye.

Elevated temperatures can lead to reabsorption and color drift, compromising the quality of phosphor-converted white light-emitting diode (pc-WLED) devices. To ensure the performance of WLEDs under these conditions, it is essential to develop luminescent materials that maintain stable color. Consequently, there is a pressing need for single-phase white-emitting phosphors with robust chromatic stability.

View Article and Find Full Text PDF

Piezoelectric Vitamin-Based Self-Assemblies for Energy Generation.

Adv Mater

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.

Structural diversity of biomolecules leads to various supramolecular organizations and asymmetric architectures of self-assemblies with significant piezoelectric response. However, the piezoelectricity of biomolecular self-assemblies has not been fully explored and the relationship between supramolecular structures and piezoelectricity remains poorly understood, which hinders the development of piezoelectric biomaterials. Herein, for the first time, the piezoelectricity of vitamin-based self-assemblies for power generation is systematically explored.

View Article and Find Full Text PDF

Quantum Dot Luminescence Microspheres Enable Ultra-Efficient and Bright Micro-LEDs.

Adv Mater

January 2025

Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China.

Quantum dot (QD)-converted micrometer-scale light-emitting diodes (micro-LEDs) are regarded as an effective solution for achieving high-performance full-color micro-LED displays because of their narrow-band emission, simplified mass transfer, facile drive circuits, and low cost. However, these micro-LEDs suffer from significant blue light leakage and unsatisfactory electroluminescence properties due to the poor light conversion efficiency and stability of the QDs. Herein, the construction of green and red QD luminescence microspheres with the simultaneously high conversion efficiency of blue light and strong photoluminescence stability are proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!