Stem cell therapy has prompted the expansion of veterinary medicine both experimentally and clinically, with the potential to contribute to contemporary treatment strategies for various diseases and conditions for which limited or no therapeutic options are presently available. Although the application of various types of stem cells, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose tissue-derived mesenchymal stem cells (AT-MSCs), and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), has promising potential to improve the health of different species, it is crucial that the benefits and drawbacks are completely evaluated before use. Umbilical cord blood (UCB) is a rich source of stem cells; nonetheless, isolation of mesenchymal stem cells (MSCs) from UCB presents technical challenges. Although MSCs have been isolated from UCB of diverse species such as human, equine, sheep, goat, and canine, there are inherent limitations of using UCB from these species for the expansion of MSCs. In this review, we investigated canine UCB (cUCB) and compared it with UCB from other species by reviewing recent articles published from February 2003 to June 2017 to gain an understanding of the limitations of cUCB in the acquisition of MSCs and to determine other suitable sources for the isolation of MSCs from canine. Our review indicates that cUCB is not an ideal source of MSCs because of insufficient volume and ethical issues. However, canine reproductive organs discarded during neutering may help broaden our understanding of effective isolation of MSCs. We recommend exploring canine reproductive and adipose tissue rather than UCB to fulfill the current need in veterinary medicine for the well-designed and ethically approved source of MSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079340 | PMC |
http://dx.doi.org/10.1155/2018/8329174 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China.
Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Centre for Heart Lung Innovation, University of British Columbia, Vancouver. (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.W.L.).
Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.
Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.
J Kidney Cancer VHL
December 2024
Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Central nervous system hemangioblastoma (CNS-HB) is the most common manifestation of von Hippel-Lindau disease (VHL). The main axis of the CNS-HB pathway is the VHL-HIF signaling pathway. Recently, we proposed an alternative VHL-JAK-STAT pathway in CNS-HB.
View Article and Find Full Text PDFFront Immunol
January 2025
Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.
View Article and Find Full Text PDFFront Immunol
January 2025
Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China.
An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!