AI Article Synopsis

Article Abstract

Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the and and sulfide-oxidizing autotrophic However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the , especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe and S oxidation in the vent fluids, or O depletion by aerobic respiration on the chimney outer wall.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094386PMC
http://dx.doi.org/10.1002/2015GC006091DOI Listing

Publication Analysis

Top Keywords

venting chimney
12
linkages mineralogy
8
mineralogy fluid
8
fluid chemistry
8
chemistry microbial
8
hydrothermal chimneys
8
chimneys endeavour
8
endeavour segment
8
segment juan
8
juan fuca
8

Similar Publications

A potential bioaerosol source from kitchen chimneys in restaurants.

Environ Int

November 2024

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China. Electronic address:

Bioaerosols are ubiquitous and have a substantial impact on the atmosphere and human health. Despite the identification of numerous bioaerosol emission sources, the contribution of anthropogenic sources remains inadequately understood. In kitchens, oil stains accumulated at the vent may discharge microorganisms into the environment with airflow, potentially discharging bioaerosol pollution.

View Article and Find Full Text PDF

Recent successes in the cultivation of DPANN archaea with their hosts have demonstrated an episymbiotic lifestyle, whereas the lifestyle of DPANN archaea in natural habitats is largely unknown. A free-living lifestyle is speculated in oxygen-deprived fluids circulated through rock media, where apparent hosts of DPANN archaea are lacking. Alternatively, DPANN archaea may be detached from their hosts and/or rock surfaces.

View Article and Find Full Text PDF

A novel mesophilic bacterium, strain SS33, was isolated from a deep-sea hydrothermal vent chimney at Suiyo Seamount, Izu-Bonin Arc, Western Pacific Ocean. The cells of strain SS33 were motile short rods with a single polar flagellum. The growth of strain SS33 was observed at the temperature range between 33 and 55 °C (optimum growth at 45 °C), at the pH range between 5.

View Article and Find Full Text PDF

Hydrothermal vents host a diverse community of microorganisms that utilize chemical gradients from the venting fluid for their metabolisms. The venting fluid can solidify to form chimney structures that these microbes adhere to and colonize. These chimney structures are found throughout many different locations in the world's oceans.

View Article and Find Full Text PDF

Unveiling the inherent physical-chemical dynamics: Direct measurements of hydrothermal fluid flow, heat, and nutrient outflow at the Tagoro submarine volcano (Canary Islands, Spain).

Sci Total Environ

March 2024

Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Consejo Superior de Investigaciones Científicas (IEO-CSIC), 38180 Santa Cruz de Tenerife, Spain. Electronic address:

Tagoro is one of the few submarine volcanoes in the world that has been monitored since its early eruptive stage in 2011 to present day. After six multidisciplinary oceanographic cruises conducted between 2014 and 2023 to gather a comprehensive dataset of georeferenced video-imagery and in situ measurements of hydrothermal flow velocities and hydrothermal fluid samples, we provide a robust characterization of the ongoing hydrothermal fluid velocity, heat flux, and nutrient release, along with an accurate delimitation of the hydrothermal field area. Our results reveal that Tagoro hydrothermal system extends from the main hydrothermal crater up to the summit, covering an area of 7600 m.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!