Mechanism for the Regulated Control of Bacterial Transcription Termination by a Universal Adaptor Protein.

Mol Cell

Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address:

Published: September 2018

NusG/Spt5 proteins are the only transcription factors utilized by all cellular organisms. In enterobacteria, NusG antagonizes the transcription termination activity of Rho, a hexameric helicase, during the synthesis of ribosomal and actively translated mRNAs. Paradoxically, NusG helps Rho act on untranslated transcripts, including non-canonical antisense RNAs and those arising from translational stress; how NusG fulfills these disparate functions is unknown. Here, we demonstrate that NusG activates Rho by assisting helicase isomerization from an open-ring, RNA-loading state to a closed-ring, catalytically active translocase. A crystal structure of closed-ring Rho in complex with NusG reveals the physical basis for this activation and further explains how Rho is excluded from translationally competent RNAs. This study demonstrates how a universally conserved transcription factor acts to modulate the activity of a ring-shaped ATPase motor and establishes how the innate sequence bias of a termination factor can be modulated to silence pervasive, aberrant transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151137PMC
http://dx.doi.org/10.1016/j.molcel.2018.07.014DOI Listing

Publication Analysis

Top Keywords

transcription termination
8
transcription
5
nusg
5
rho
5
mechanism regulated
4
regulated control
4
control bacterial
4
bacterial transcription
4
termination universal
4
universal adaptor
4

Similar Publications

RNA polymerase II (Pol II) regulates eukaryotic gene expression through dynamic phosphorylation of its C-terminal domain (CTD). Phosphorylation at Ser2 and Thr4 on the CTD is crucial for RNA 3' end processing and facilitating the recruitment of cleavage and termination factors. However, the transcriptional roles of most CTD-binding proteins remain poorly understood.

View Article and Find Full Text PDF

Background: The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored.

Methods: We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues.

View Article and Find Full Text PDF

Background: Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers.

View Article and Find Full Text PDF

Background: Virus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression in Arabidopsis thaliana by Myzus persicae (green peach aphid), and turnip mosaic virus (TuMV).

Results: By investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors.

View Article and Find Full Text PDF

We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!