Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigated the effects of 3 dairy cow feeding systems on the composition, yield, and biochemical and physical properties of low-moisture part-skim Mozzarella cheese in mid (ML; May-June) and late (LL; October-November) lactation. Sixty spring-calving cows were assigned to 3 herds, each consisting of 20 cows, and balanced on parity, calving date, and pre-experimental milk yield and milk solids yield. Each herd was allocated to 1 of the following feeding systems: grazing on perennial ryegrass (Lolium perenne L.) pasture (GRO), grazing on perennial ryegrass and white clover (Trifolium repens L.) pasture (GRC), or housed indoors and offered total mixed ration (TMR). Mozzarella cheese was manufactured on 3 separate occasions in ML and 4 in LL in 2016. Feeding system had significant effects on milk composition, cheese yield, the elemental composition of cheese, cheese color (green to red and blue to yellow color coordinates), the extent of flow on heating, and the fluidity of the melted cheese. Compared with TMR milk, GRO and GRC milks had higher concentrations of protein and casein and lower concentrations of I, Cu, and Se, higher cheese-yielding capacity, and produced cheese with lower concentrations of the trace elements I, Cu, and Se and higher yellowness value. Cheese from GRO milk had higher heat-induced flow and fluidity than cheese from TMR milk. These effects were observed over the entire lactation period (ML + LL), but varied somewhat in ML and LL. Feeding system had little, or no, effect on gross composition of the cheese, the proportions of milk protein or fat lost to cheese whey, the texture of the unheated cheese, or the energy required to extend the molten cheese. The differences in color and melt characteristics of cheeses obtained from milks with the different feeding systems may provide a basis for creating points of differentiation suited to different markets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2018-14566 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!