Protein Motion and Configurations in a Form-Fitting Nanopore: Avidin in ClyA.

Biophys J

Department of Physics, Harvard University, Cambridge, Massachusetts; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts. Electronic address:

Published: September 2018

We probe the molecular dynamics and states of an avidin protein as it is captured and trapped in a voltage-biased cytolysin A nanopore using time-resolved single-molecule electrical conductance signals. The data for very large numbers of single-molecule events are analyzed and presented by a new method that provides clear visual insight into the molecular scale processes. Avidin in cytolysin A has surprisingly rich conductance spectra that reveal transient and more permanently trapped protein configurations in the pore and how they evolve into one another. We identify a long-lasting, stable, and low-noise configuration of avidin in the nanopore into which avidin can be reliably trapped and released. This may prove useful for single-molecule studies of other proteins that can be biotinylated and then transported by avidin to the pore via their coupling to avidin with biotin-avidin linking. We demonstrate the sensitivity of this system with detection of biotin attached to avidin captured by the pore.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127461PMC
http://dx.doi.org/10.1016/j.bpj.2018.07.024DOI Listing

Publication Analysis

Top Keywords

avidin
8
nanopore avidin
8
protein motion
4
motion configurations
4
configurations form-fitting
4
form-fitting nanopore
4
avidin clya
4
clya probe
4
probe molecular
4
molecular dynamics
4

Similar Publications

Assembly-enhanced recognition: A biomimetic pathway to achieve ultrahigh affinities.

Proc Natl Acad Sci U S A

January 2025

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.

View Article and Find Full Text PDF

Negative staining electron microscopy is one of the easiest ways to determine the shape and dimensions of multimeric protein complexes over 100 kDa molecular weight. This method requires small volumes (< 10 μL) of dilute protein (0.01-0.

View Article and Find Full Text PDF

Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra.

View Article and Find Full Text PDF

Background: CD133 is regarded as a marker and target for cancer stem cells (CSCs) in various types of tumors, including hepatocellular carcinoma (HCC). The expressions of CD133 and programmed cell death ligand 1 (PD-L1) in CSCs exhibit a positive feedback regulatory effect. This effect promotes CSC proliferation and immune escape, ultimately leading to tumor progression and poor prognosis.

View Article and Find Full Text PDF

Corosolic acid (CA), a natural triterpenoid, exhibits various biological activities and is often called as plant-derived insulin due to its significant hypoglycemic effects, making it especially beneficial for individuals with diabetes or high blood glucose levels. However, CA has notable in vitro toxicity, low water solubility, and poor pharmacokinetic properties. To address these limitations, a series of CA derivatives were synthesized, resulting in the identification of derivative H26, which demonstrates a significantly enhanced hypoglycemic effect, reduced toxicity, and improved pharmacokinetic characteristics compared to CA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!