Oil tea improves glucose and lipid levels and alters gut microbiota in type 2 diabetic mice.

Nutr Res

Melbourne School of Population & Global Health, University of Melbourne, Carlton, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.

Published: September 2018

Oil tea has traditionally been used in minority populations in China for treating various ailments in traditional Chinese medicine. Individually, green tea and ginger, which are the main ingredients of oil tea, have demonstrated antidiabetic effects; however, whether oil tea exerts antidiabetic effects remains unknown. In addition, aberrant gut microbiota structure is associated with diabetic status, and research indicates that there may be beneficial effects of tea on gut microbiota. Therefore, we hypothesized that oil tea exerts antidiabetic effects and induces alteration in gut microbiota. To test our hypothesis, we first examined the nutrition composition of oil tea. Then, db/db mice were randomly divided into 3 groups and orally gavaged with saline, metformin, and oil tea for 8 weeks. Fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and lipid levels were tested during the experiment. 16S rRNA genes were sequenced and changes in gut microbiota in response pre/post treatment were examined. Our experiments showed that oil tea contains high concentrations of tea polyphenols (246.35 mg/100 g) and [6]-gingerol (2.98 mg/100 g). It appeared that oil tea treatment significantly suppressed the postprandial blood glucose elevation and lowered the levels of FBG, total cholesterol, triglycerides, and LDL-cholesterol (P < .05). The composition of gut microbiota changed significantly in response to oil tea treatment, Lachnospiraceae were significantly enriched (q < 0.05, LDA score> 3.5). Redundancy analysis identified 155 oil tea-modulating family level phylotypes, where Lachnospiraceae significantly correlated with FBG, total cholesterol, and LDL-cholesterol (P < .05). Our findings demonstrate that oil tea improved glucose and lipid levels and modulated gut microbiota in db/db mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nutres.2018.05.004DOI Listing

Publication Analysis

Top Keywords

oil tea
44
gut microbiota
28
tea
13
oil
12
lipid levels
12
antidiabetic effects
12
glucose lipid
8
tea exerts
8
exerts antidiabetic
8
db/db mice
8

Similar Publications

Background: Chronic soft tissue injury is characterized by sterile inflammation and pain. Gua sha with Masanggoubang oil (GSMO) treatment has been found to possess anti-inflammatory and analgesic effects.

Objectives: To explore the mechanism of GSMO in chronic soft tissue injuries.

View Article and Find Full Text PDF

Formulation of catechin hydrate nanoemulsion for fortification of yogurt.

J Food Sci Technol

February 2025

Department of Food Process Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 India.

Unlabelled: Catechin hydrate (CH) is a kind of polyphenol present in many plantsincluding green tea, fruits, red wine and cocoa with very good antioxidant effect. The formulation of CH nanoemulsion increased the bioavailability and stability of catechin, allowing for easier food incorporation and faster absorption by the body. The major goal of the current study was to create a nanoemulsion as a reliable delivery mechanism for catechin hydrate and its incorporation into yogurt to increase its antioxidant activity.

View Article and Find Full Text PDF

Maxim. is valued for its high oil yield, which fruit has high oil content and good health effects. However, the large amount of unsaturated fatty acids in the oil is easily oxidized, and its storage intolerance has seriously restricted its marketing.

View Article and Find Full Text PDF

Development of a Combined 2D-MGD TLC/HPTLC Method for the Separation of Terpinen-4-ol and α-Terpineol from Tea Tree, , Essential Oil.

Biomolecules

January 2025

United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA.

Tea tree oil (TTO), acquired from (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. However, in some instances, the cost and time of analysis may pose a challenge.

View Article and Find Full Text PDF

Comparative Study of Crucial Properties of Packaging Based on Polylactide and Selected Essential Oils.

Foods

January 2025

Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland.

In order to establish the differences in packaging containing various essential oils, polylactide (PLA)-based polymeric films incorporating poly(ethylene glycol) (PEG), clove (C), grapefruit (G), rosemary (R), and tea tree (T) essential oils were obtained and subsequently analyzed. In addition to examining structure and morphology, the polymer films underwent analyses that are particularly important with regard to contact with food. Mechanical and antioxidant properties, water vapor transmission rate (WVTR), and analysis of barrier properties against ultraviolet (UV) radiation, as well as the migration of ingredients into food simulants such as 10% / solutions of ethanol, 3% / acetic acid solution, and isooctane, were among the critical studies conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!