A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of an advanced derivatization protocol for the unambiguous identification of monosaccharides in complex mixtures by gas and liquid chromatography. | LitMetric

Development of an advanced derivatization protocol for the unambiguous identification of monosaccharides in complex mixtures by gas and liquid chromatography.

J Chromatogr A

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany; Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany. Electronic address:

Published: September 2018

The separation and analysis of complex monosaccharide mixtures is highly challenging and requires typically carefully selected derivatization procedures to avoid changes in the sample composition. Here we present in a comparative study several single- and two-step derivatization approaches for LC and GC separations using a set of reference compounds ranging from C1 building block such as formaldehyde to C6 monosaccharides. Separation conditions have been optimized resulting in the simultaneous separation of 15 unbranched aldoses. By parallel derivatization using hydroxylamine hydrochloride (HACl)/ N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and O-ethylhydroxylamine hydrochloride (EtOx)/ N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and comparative GC measurements we developed a protocol for the unambiguous identification and separation of aldoses, ketoses, alditols and aldonic acids, which commonly occur in complex sugar mixtures as reaction by-products or decomposition products. In particular this procedure helps to deconvolute overlapping analytes and facilitates quantification. Additionally, the method presented here has been investigated in regard to storage life, detection limits, quantification and MS analysis. The broad applicability of this method to different sample matrices is shown for the analysis of food samples and complex aldol reaction mixtures in the formose reaction, which is of great relevance in the context of the origin of life.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2018.07.015DOI Listing

Publication Analysis

Top Keywords

protocol unambiguous
8
unambiguous identification
8
no-bistrimethylsilyltrifluoroacetamide bstfa
8
development advanced
4
derivatization
4
advanced derivatization
4
derivatization protocol
4
identification monosaccharides
4
complex
4
monosaccharides complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!