Lignin is a complex aromatic heteropolymer that plays essential roles in mechanical support, water transport, and response to biotic and abiotic stresses. The tea plant is a leaf-type beverage crop, which serves as a resource for non-alcoholic beverage tea. The content and distribution of lignin in tea plant leaves seriously affect the quality of tea. However, the biosynthetic pathways of lignin remain to be characterized in the tea plant. In the present study, lignin accumulation was investigated in tea plant leaves and stems at three developmental stages. The lignin content continuously increased during leaf and stem development in both tea plant cultivars 'Fudingdabai' and 'Suchazao.' The lignin distribution and anatomical characteristics of the tea plant leaves coincided with lignin accumulation and showed that lignin is mainly distributed in the epidermis, xylem, and vascular bundle sheath. 'Suchazao' exhibits a low lignin content and lacks a vascular bundle sheath. Twelve genes encoding the enzymes involved in the lignin biosynthesis of tea plant were identified and included CsPAL, CsC4H, Cs4CL, CsHCT, CsC3H, CsCCoAOMT, CsCCR, CsCAD, CsF5H, CsCOMT, CsPER, and CsLAC. The expression profiling of lignin biosynthesis-related genes and analysis of lignin accumulation may help elaborate the regulatory mechanisms of lignin biosynthesis in tea plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-018-1299-9 | DOI Listing |
Curr Nutr Rep
January 2025
Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.
Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.
Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.
Clin Oral Investig
January 2025
Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland.
Objective: Aim of this study was to critically appraise clinical evidence on the potential benefits of adjunctive use of superfoods green tea and turmeric as mouthrinse or local delivery agents in the treatment of periodontal disease.
Materials And Methods: Electronic searches were performed in four databases for randomized trials from inception to February 2024 assessing the supplemental use of superfoods green tea and turmeric for gingivitis/periodontitis treatment. After duplicate study selection, data extraction, and risk-of-bias assessment with the RoB 2 tool, random-effects meta-analyses of Mean Differences (MD) or Standardized Mean Differences (SMD) with their 95% confidence intervals (CI) were performed.
J Ethnopharmacol
January 2025
Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil; Center for Therapeutic Innovation Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, Brazil. Electronic address:
Ethnopharmacological Relevance: Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes.
View Article and Find Full Text PDFHortic Res
January 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
The circadian clock mediates metabolic functions of plants and rhythmically shapes structure and function of microbial communities in the rhizosphere. However, it is unclear how the circadian rhythm of plant hosts regulates changes in rhizosphere bacterial and fungal communities and nutrient cycles. In the present study, we measured diel changes in the rhizosphere of bacterial and fungal communities, and in nitrogen (N) and phosphorus (P) cycling in 20-year-old tea plantations.
View Article and Find Full Text PDFJ Food Sci
January 2025
Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.
Oolong tea, a popular traditional Chinese tea, possesses various bioactivities, but little is known about its roles in the protection against pathogens, such as Staphylococcus aureus, in vivo. This study investigated the roles of the water-soluble oolong tea extracts (OTE) on S. aureus infection in Caenorhabditis elegans, a promising model to study the host-microbe interactions in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!