AI Article Synopsis

  • Lignin is a complex polymer crucial for plant support, water transport, and stress response, with its content influencing tea quality.
  • The study observed lignin accumulation in the leaves and stems of two tea plant cultivars, showing continuous growth during their development stages, with differences in distribution and content between the cultivars.
  • Twelve key genes related to lignin biosynthesis were identified, providing insights into the regulatory mechanisms governing lignin production in tea plants.

Article Abstract

Lignin is a complex aromatic heteropolymer that plays essential roles in mechanical support, water transport, and response to biotic and abiotic stresses. The tea plant is a leaf-type beverage crop, which serves as a resource for non-alcoholic beverage tea. The content and distribution of lignin in tea plant leaves seriously affect the quality of tea. However, the biosynthetic pathways of lignin remain to be characterized in the tea plant. In the present study, lignin accumulation was investigated in tea plant leaves and stems at three developmental stages. The lignin content continuously increased during leaf and stem development in both tea plant cultivars 'Fudingdabai' and 'Suchazao.' The lignin distribution and anatomical characteristics of the tea plant leaves coincided with lignin accumulation and showed that lignin is mainly distributed in the epidermis, xylem, and vascular bundle sheath. 'Suchazao' exhibits a low lignin content and lacks a vascular bundle sheath. Twelve genes encoding the enzymes involved in the lignin biosynthesis of tea plant were identified and included CsPAL, CsC4H, Cs4CL, CsHCT, CsC3H, CsCCoAOMT, CsCCR, CsCAD, CsF5H, CsCOMT, CsPER, and CsLAC. The expression profiling of lignin biosynthesis-related genes and analysis of lignin accumulation may help elaborate the regulatory mechanisms of lignin biosynthesis in tea plant.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-018-1299-9DOI Listing

Publication Analysis

Top Keywords

tea plant
36
lignin accumulation
16
lignin
14
plant leaves
12
tea
11
plant
9
leaf stem
8
stem development
8
development tea
8
lignin content
8

Similar Publications

Phytochemicals in Obesity Management: Mechanisms and Clinical Perspectives.

Curr Nutr Rep

January 2025

Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.

Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.

Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.

View Article and Find Full Text PDF

Objective: Aim of this study was to critically appraise clinical evidence on the potential benefits of adjunctive use of superfoods green tea and turmeric as mouthrinse or local delivery agents in the treatment of periodontal disease.

Materials And Methods: Electronic searches were performed in four databases for randomized trials from inception to February 2024 assessing the supplemental use of superfoods green tea and turmeric for gingivitis/periodontitis treatment. After duplicate study selection, data extraction, and risk-of-bias assessment with the RoB 2 tool, random-effects meta-analyses of Mean Differences (MD) or Standardized Mean Differences (SMD) with their 95% confidence intervals (CI) were performed.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes.

View Article and Find Full Text PDF

The circadian clock mediates metabolic functions of plants and rhythmically shapes structure and function of microbial communities in the rhizosphere. However, it is unclear how the circadian rhythm of plant hosts regulates changes in rhizosphere bacterial and fungal communities and nutrient cycles. In the present study, we measured diel changes in the rhizosphere of bacterial and fungal communities, and in nitrogen (N) and phosphorus (P) cycling in 20-year-old tea plantations.

View Article and Find Full Text PDF

Roles of oolong tea extracts in the protection against Staphylococcus aureus infection in Caenorhabditis elegans.

J Food Sci

January 2025

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.

Oolong tea, a popular traditional Chinese tea, possesses various bioactivities, but little is known about its roles in the protection against pathogens, such as Staphylococcus aureus, in vivo. This study investigated the roles of the water-soluble oolong tea extracts (OTE) on S. aureus infection in Caenorhabditis elegans, a promising model to study the host-microbe interactions in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!