Based on their excellent tumor-homing capacity, genetically engineered mesenchymal stem cells (MSCs) are under investigation as tumor-selective gene delivery vehicles. Transgenic expression of the sodium iodide symporter (NIS) in genetically engineered MSCs allows noninvasive tracking of MSC homing by imaging of functional NIS expression as well as therapeutic application of 131I. The use of tumor stroma-activated promoters can improve tumor-specific MSC-mediated transgene delivery. The essential role of transforming growth factor B1 (TGFB1) and the SMAD downstream target in the signaling between tumor and the surrounding stroma makes the biology of this pathway a potential option to better control NIS expression within the tumor milieu. Bone marrow-derived MSCs were stably transfected with a NIS-expressing plasmid driven by a synthetic SMAD-responsive promoter (SMAD-NIS-MSCs). Radioiodide uptake assays revealed a 4.9-fold increase in NIS-mediated perchlorate-sensitive iodide uptake in SMAD-NIS-MSCs after TGFB1 stimulation compared to unstimulated cells demonstrating the successful establishment of MSCs, which induce NIS expression in response to activation of TGFB1 signaling using a SMAD-responsive promoter. 123I-scintigraphy revealed significant tumor-specific radioiodide accumulation and thus NIS expression after systemic application of SMAD-NIS-MSCs into mice harboring subcutaneous tumors derived from the human hepatocellular carcinoma (HCC) cell line HuH7, which express TGFB1. 131I therapy in SMAD-NIS-MSCs-treated mice demonstrated a significant delay in tumor growth and prolonged survival. Making use of the tumoral TGFB1 signaling network in the context of MSC-mediated NIS gene delivery is a promising approach to foster tumor stroma-selectivity of NIS transgene expression and tailor NIS-based gene therapy to TGFB1-rich tumor environments.

Download full-text PDF

Source
http://dx.doi.org/10.1530/ERC-18-0173DOI Listing

Publication Analysis

Top Keywords

nis expression
16
mesenchymal stem
8
nis
8
nis gene
8
genetically engineered
8
gene delivery
8
smad-responsive promoter
8
tgfb1 signaling
8
expression
6
tumor
6

Similar Publications

Purpose Of Program: Canada's growing prevalence of people with kidney failure receiving kidney replacement therapy has necessitated the expansion of dialysis programs. Although facility-based hemodialysis is the predominant dialysis modality in Canada, it is substantially costlier than home dialysis (peritoneal or home hemodialysis). Initiatives to increase the uptake of home dialysis typically consist of didactic and experiential education.

View Article and Find Full Text PDF

[18F]Tetrafluoroborate: a new NIS PET/CT radiopharmaceutical. An overview focused on differentiated thyroid cancer.

Eur Thyroid J

January 2025

G Treglia, Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Bellinzona, Switzerland.

Background: In relapsing differentiated thyroid cancer (DTC), the in vivo evaluation of natrium-iodine symporter (NIS) expression is pivotal in the therapeutic planning and is achieved by [131/123I]Iodine whole-body scan. However, these approaches have low sensitivity due to the low sensitivity due to the low resolution of SPECT. [18F]Tetrafluoroborate (TFB) has been proposed as a viable alternative, which could outperform [131/123I]Iodine scans owing to the superior PET resolution.

View Article and Find Full Text PDF

Background: Maternal hypertensive disorders of pregnancy (HDP) was associated with increased risk of congenital hypothyroidism in preterm infants, but its underlying mechanisms remain unclear.

Objective: To investigate the possible mechanisms by which intrauterine exposure to HDP affects thyroid hormone synthesis in preterm infant rats.

Methods: preterm infant rats were obtained by Caesarean section delivery from the L-NAME group and Control groups which was induced by L-NAME and saline, respectively.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) exposure is associated with radioiodine therapy resistance and dedifferentiation of differentiated thyroid cancer.

Environ Pollut

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China. Electronic address:

Differentiated thyroid cancer (DTC) generally has a favorable prognosis, and radioactive iodine (RAI) therapy is typically used for metastatic DTC that continues to progress and poses life-threatening risks. However, resistance to RAI in metastatic DTC significantly impairs treatment effectiveness. This study aims to identify potential compounds that may influence RAI efficacy.

View Article and Find Full Text PDF

Functional characterization of novel compound heterozygous missense gene variants causing congenital dyshormonogenic hypothyroidism.

Front Endocrinol (Lausanne)

January 2025

Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.

Introduction: The sodium/iodide symporter (NIS) mediates active iodide accumulation in the thyroid follicular cell. Biallelic loss-of-function variants in the NIS-coding gene cause congenital dyshormonogenic hypothyroidism due to a defect in the accumulation of iodide, which is required for thyroid hormonogenesis.

Objective: We aimed to identify, and if so to functionally characterize, novel pathogenic gene variants in a patient diagnosed with severe congenital dyshormonogenic hypothyroidism characterized by undetectable radioiodide accumulation in a eutopic thyroid gland, as well as in the salivary glands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!