The voltage-gated potassium channel Kv1.5 belongs to the Shaker superfamily. Kv1.5 is composed of four subunits, each comprising 613 amino acids, which make up the N terminus, six transmembrane segments (S1-S6), and the C terminus. We recently demonstrated that, in HEK cells, extracellularly applied proteinase K (PK) cleaves Kv1.5 channels at a single site in the S1-S2 linker. This cleavage separates Kv1.5 into an N-fragment (N terminus to S1) and a C-fragment (S2 to C terminus). Interestingly, the cleavage does not impair channel function. Here, we investigated the role of the N terminus and S1 in Kv1.5 expression and function by creating plasmids encoding various fragments, including those that mimic PK-cleaved products. Our results disclosed that although expression of the pore-containing fragment (Frag(304-613)) alone could not produce current, coexpression with Frag(1-303) generated a functional channel. Immunofluorescence and biotinylation analyses uncovered that Frag(1-303) was required for Frag(304-613) to traffic to the plasma membrane. Biochemical analysis revealed that the two fragments interacted throughout channel trafficking and maturation. In Frag(1-303)+(304-613)-coassembled channels, which lack a covalent linkage between S1 and S2, amino acid residues 1-209 were important for association with Frag(304-613), and residues 210-303 were necessary for mediating trafficking of coassembled channels to the plasma membrane. We conclude that the N terminus and S1 of Kv1.5 can attract and coassemble with the rest of the channel ( Frag(304-613)) to form a functional channel independently of the S1-S2 linkage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6177590 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.004065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!