EDTA-Fe(III) Fenton-like oxidation for the degradation of malachite green.

J Environ Manage

Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China.

Published: November 2018

Industrial waste, urban sewage and aquaculture have led to severely increased grades of environment pollutants such as dyes, pesticides and fertilizer. The use of technologies for purifying contaminated waters can be difficult and toxic due to the anti-photolysis, anti-oxidation and anti-bio-oxidation characteristics of organic pollutants, and there is therefore a significant need for new approaches. Here, we report methods of Fenton oxidation and EDTA-Fe(III) Fenton-like oxidation which can be used to degrade malachite green (MG: a dye and antibiotic-like substance) from contaminated water. Compared with the degradation rate (59.34%) of the Fe(III)/HO Fenton process, the EDTA-Fe(III) Fenton-like oxidation got a better degradation rate (92.7%) at neutral pH conditions. By conducting a series of parallel controlled experiments (changing parameters such as the reactant concentration, temperature, and pH), we report the relationships between the degradation effect and different parameters, and we fitted their pseudo first order kinetic curves. Furthermore, we repeated to adjustment of the concentrations of MG in solutions to test the cycle performance and catalytic activities of EDTA-Fe(III)/HO system and it showed good repeatability in the first five rounds and all of them keep the degradation efficiencies greater than 80%. By conducting comparative spin-trapping electron paramagnetic resonance (EPR) experiments, we showed indirectly that the OH contributes to the degradation of MG. Additionally, the results of the EPR experiments showed that EDTA contributes to the generation of OH in the EDTA-Fe(III)/HO Fenton-like system. By conducting total organic carbon (TOC) analysis experiments, we found that EDTA was also oxidized to some extent during the degradation of MG. In all, the findings of this work widen the range of the optimal pH values up to neutral condition for degradation of MG by use of EDTA-Fe(III) Fenton-like system. And this system could be used as one approach for the degradation of organic pollutants at neutral conditions and provide some initial information regarding EDTA-Fe(III) Fenton-like oxidations. It's significant for the expansion of the homogenous Fenton-like family and its application in the field of water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2018.08.029DOI Listing

Publication Analysis

Top Keywords

edta-feiii fenton-like
20
fenton-like oxidation
12
degradation
9
malachite green
8
organic pollutants
8
degradation rate
8
neutral conditions
8
epr experiments
8
experiments edta
8
fenton-like system
8

Similar Publications

Emerging contaminants (ECs) pose great challenges to water treatment technology due to their complexity and high harm. In this paper, the method of dielectric barrier discharge (DBD) plasma coupled with iron-based catalyst (FeNC) activating periodate (PI) was first designed for ECs removal. The ingenious introduction of FeNC not only promotes the Fenton-like reaction of DBD system but also reduces the PI activation energy barrier and accelerates the electron shuttle between PI and pollutants.

View Article and Find Full Text PDF

Zirconium-doped iron oxide nanoparticles for enhanced peroxidase-like activity.

Talanta

January 2025

College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, PR China. Electronic address:

FeO nanoparticles (NPs) have emerged as pioneering nanozymes with applications in clinical diagnosis, environmental protection and biosensing. However, it is currently limited by insufficient catalytic activity due to poor electron transfer. In this study, we synthesized electron-rich-Zr-doped defect-rich FeO NPs (ZrFeO) using a one-pot solvothermal method.

View Article and Find Full Text PDF

Molecular Mechanism of Unexpected Metal-Independent Hydroxyl Radical Production by Mercaptotriazole and HO.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China.

It is well known that hydroxyl radical (OH) can be largely produced either through the classic iron-mediated inorganic-Fenton system or our recently discovered haloquinones/HO organic-Fenton-like system, but rarely produced via thiol compounds. Here, unexpectedly, we found that OH can be unequivocally generated by incubation of HO and mercaptotriazole (MTZ), a typical heterocyclic thiol which has been used as an environmentally friendly corrosion inhibitor for mild steel. By the complementary applications of HPLC-MS and oxygen-18 isotope-labeling method, MTZ-derived sulfenic (MTZ-SOH) and sulfinic acids were detected and identified as transient intermediates, and sulfonic acid as final products.

View Article and Find Full Text PDF

Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.

View Article and Find Full Text PDF

Photothermal therapy (PTT) using thermal and tumor microenvironment-responsive reagents is promising for cancer treatment. This study demonstrates an effective PTT nanodrug consisting of hollow-structured, thermally sensitive polydopamine nanobowls (HPDA NB), molybdenum sulfide (MoS) nanozyme, and tirapazamine (TPZ; a hypoxia-responsive drug), with a structure of HPDA@TPZ/MoS NBs which is hereafter denoted as HPTZMoS NBs. With the Fenton-like activity, the HPTZMoS NBs in the presence of HO catalyze the formation of hydroxyl radicals, providing chemodynamic therapy (CDT) effect and deactivating glutathione.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!