Anthocyanins (Ants) are water-soluble secondary metabolites that are responsible for red colour of plant leaves. To determine photosynthetic pigments, 80% acetone was used to extract Ants from Ant-containing leaves of test plants. However, using the 80% acetone extraction method can lead to interference between chlorophylls (Chls) and Ants. Porphyrins, such as protoporphyrin IX (PPIX), Mg-protoporphyrin IX (MgPP), and protochlorophyllide (Pchlide), are Chl biosynthetic intermediates and demonstrate photospectrometric characteristics similar to those of Chl. Although the ether/water extraction method was able to remove Ants interference when detecting porphyrins, the porphyrins extraction efficiency was lower than that of the 80% acetone extraction method. Low Ants levels interfered with individual porphyrin ratios, and the extent of the effect was correlated with Ants concentrations. We developed the three equations could eliminate interference by Ants when determining the porphyrin molecular percentage (%) and were comprehensively applied to all tested species of Ants-containing leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2018.08.007DOI Listing

Publication Analysis

Top Keywords

80% acetone
12
extraction method
12
determining porphyrin
8
plant leaves
8
acetone extraction
8
ants
7
eliminating interference
4
interference anthocyanins
4
anthocyanins determining
4
porphyrin ratio
4

Similar Publications

Solvent Mediated Interfacial Microenvironment Design for High-Performance Electrochemical CO Reduction to C Products.

Small

January 2025

National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.

Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.

View Article and Find Full Text PDF

This study systematically investigated the effect of organic solvent addition on the detection signal intensity of 15 organic pesticides in water using ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS). The analysis of chromatographic peak area ratios in ultrapure water (UPW) versus 30% methanol (MeOH)-UPW showed that the adsorption effects (AEs, mainly from injection vials with weaker polarity) were the main factor influencing the detection intensity of the organic pesticides. The AEs varied with pesticide type and concentration, especially for those with high logK values and longer retention times, such as malathion, triadimefon, prometryn, S-metolachlor, diazinon, and profenofos.

View Article and Find Full Text PDF

Determination of antibacterial and antioxidant potential of organic crude extracts from Malus domestica, Cinnamomum verum and Trachyspermum ammi.

Sci Rep

January 2025

Department of Research and Development, Paktex Industries, 2.5 KM Tatlay Road, Kamoke, Gujranwala, 52470, Pakistan.

Plants are the rich source of biologically active compounds which can be obliging against various pathogenic microorganisms and cancerous diseases. The current study evaluated the antibacterial potential of aqueous, methanol, ethanol, and acetone extracts of Malus domestica (apple), Cinnamomum verum (cinnamon) and Trachyspermum ammi (ajwain) via agar well diffusion methods and minimum inhibitory concentration (MIC) in (mm) against Staphylococcus aureus (ATCC 25923) and Salmonella typhi (ATCC 19430). The antioxidant properties including total phenolic content (TPC), total flavonoid content (TFC), DPPH and reducing power was determined by UV/VIS spectrophotometery and all the results interpreted through one way ANOVA (STATISTICA).

View Article and Find Full Text PDF

Recovery of alkaline proteinases from fisheries wastes: biochemical characterization and applications.

J Fish Biol

December 2024

Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CCT - Mar del Plata, Consejo Nacional de Investigaciones Científicas y Tecnicas, Mar del Plata, Argentina.

Fish visceral waste, which is normally discarded, is considered one of the richest sources of proteinases with potential biotechnological applications. For this reason, alkaline proteinases from viscera of Argentine hake Merluccius hubbsi, Brazilian flathead Percophis brasiliensis, Brazilian codling Urophycis brasiliensis, and stripped weakfish Cynoscion guatucupa were characterized. Individuals were caught by a commercial fleet off the coast of the Argentinean Sea.

View Article and Find Full Text PDF

Additive Fabrication of Polyaniline and Carbon-Based Composites for Energy Storage.

Polymers (Basel)

November 2024

School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

The growing demand for efficient energy storage systems, particularly in portable electronics and electric vehicles, has led to increased interest in supercapacitors, which offer high power density, rapid charge/discharge rates, and long cycle life. However, improving their energy density without compromising performance remains a challenge. In this study, we developed novel 3D-printed reduced graphene oxide (rGO) electrodes coated with polyaniline (PANI) to enhance their electrochemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!