Empirical studies have shown that, unlike species with specialized resource requirements, generalist species may benefit from habitat destruction. We use a family of models to probe the causes of the contrasting responses of these two types of species to habitat destruction. Our approach allows a number of mechanisms to be switched on and off, thereby making it possible to study their marginal and joint effects. Unlike many previous models, we do not assume any intrinsic competitive asymmetry between the species, and we assume pre-emptive rather than displacement competition. Under these assumptions, in the mean-field model the prevalences of all species decrease monotonically with decreasing habitat availability, independently of the degree of specialization. However, in the stochastic and spatial individual-based simulations of the same model, the specialists dominate in landscapes of high quality, whereas generalists thrive in landscapes of intermediate quality; no species persist in very poor landscapes. The same pattern also occurs in a non-spatial stochastic model but not in a deterministic spatial model, showing that demographic stochasticity plays a key role in shaping the outcome of competitive interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tpb.2018.08.001 | DOI Listing |
Int J Mol Sci
December 2024
Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
, one of the world's most destructive invasive species, is known for causing significant ecological and economic harm. While extensive research has focused on its growth characteristics, secondary metabolites, and control measures, its chemical interactions with the environment-particularly the role of flavonoids in shaping soil microbial communities-remain underexplored. In this study, we identified and quantified ten flavonoids from root exudates using UPLC-MS, including Hispidulin, Isorhamnetin, and Mikanin.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, New York, 10029, USA.
Vitiligo is a chronic autoimmune skin condition characterized by depigmentation due to the destruction of melanocytes. Recent research has identified potential links between vitiligo and alterations in both the gut and skin microbiomes. This systematic review aims to explore these microbiome changes and their potential role in the onset and progression of vitiligo.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
The southeastern Yunnan is one of the most typical areas in China with karst landforms. The rich variety of vegetation types and plant diversity means that threatened status are also synchronized. Over the past 20 years, the comprehensive conservation team for plant species with extremely small populations (PSESP) has conducted in-depth field surveys in the region, combining relevant literature and conservation projects to compile a list of PSESP which including conservation and endangered status, conservation actions, and scientific research.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Nematology, Department of Plant Pathology, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, China.
Meloidogyne incognita, a highly destructive plant-parasitic nematode, poses a significant threat to crop production. The reliance on chemical nematicides for nematode control has been crucial; however, the banning of many effective nematicides due to their adverse effects has necessitated the exploration of alternative solutions. Rhizosphere biocontrol bacteria, particularly strains of Bacillus, have demonstrated promising results in managing plant-parasitic nematodes.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
Botany & Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.
Background: The destructive human activities, encroachment of natural habitats, and hyperarid climate threaten the wild flora of the unprotected mountainous areas facing the Gulf of Suez, Egypt. So, this study aims to revise and give an updated systematic status of the flowering plants growing there to conserve and utilize valuable biodiversity.
Results: This study showed the presence of 136 species, including 7 sub-species of vascular plants, 12 species of monocots, and 124 species dicots belonged to 98 genera and 37 families.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!