The evaluation of subvisible particles, including protein aggregates, in therapeutic protein products has been of great interest for both pharmaceutical manufacturers and regulatory agencies. To date, the flow imaging (FI) method has emerged as a powerful tool instead of light obscuration (LO) due to the fact that (1) protein aggregates contain highly transparent particles and thereby escape detection by LO and (2) FI provides detailed morphological characteristics of subvisible particles. However, the FI method has not yet been standardized nor listed in any compendium. In an attempt to assess the applicability of the standardization of the FI method, we conducted a collaborative study using FI and LO instruments in a Japanese biopharmaceutical consortium. Three types of subvisible particle preparations were shared across 12 laboratories and analyzed for their sizes and counts. The results were compared between the methods (FI and LO), inter-laboratories, and inter-instruments (Micro Flow Imaging and FlowCam). We clarified the marked difference between the detectability of FI and LO when counting highly transparent protein aggregates in the preparations. Although FlowCam provided a relatively higher number of particles compared with MFI, consistent results were obtained using the instrument from the same manufacturer in all 3 samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2018.08.006 | DOI Listing |
Bioprocess Biosyst Eng
January 2025
Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.
View Article and Find Full Text PDFInt J Pharm
December 2024
School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China. Electronic address:
This study investigates the effect of silanol density on the surface of glass containers on the stability of monoclonal antibody (mAb) formulations subjected to mechanical stress. By calcining Type I glass containers at different temperatures, we altered the concentration of silanols on the glass surface and examined its impact on the stability of protein formulations under mechanical stress. Contact angle measurements and Fourier Transform Infrared (FTIR) spectroscopy indicated that silanol formation influences the hydrophilicity of the surface.
View Article and Find Full Text PDFPharm Res
December 2024
Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc., Rahway, NJ, 07065, USA.
Objective: Pre-filled syringes (PFSs) have become popular as a convenient and cost-effective container closure system for delivering biotherapeutics. However, standard siliconized PFSs may compromise the stability of therapeutic proteins due to their exposure to the silicone oil-water interface. To address this concern, silicone oil-free (SOF) glass syringes coupled with silicone-oil free plunger stoppers have been developed.
View Article and Find Full Text PDFJ Pharm Sci
November 2024
Drug Product and Device Development, Takeda Pharmaceutical Company, Lexington, MA, USA. Electronic address:
Although Closed System Transfer Devices (CSTDs) are used in oncology for dose preparation and administration, the impact of CSTDs on biologics and other non-small molecular modalities are not fully understood. We investigated particle formation when preparing and mock administering three experimental biologics (mAb, ADC, and fusion protein) using seven models of CSTDs. A wide range of visible and subvisible particle formation was observed among CSTD models.
View Article and Find Full Text PDFJ Pharm Sci
November 2024
Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!