Can post encroachment time substitute intersection characteristics in crash prediction models?

J Safety Res

Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States. Electronic address:

Published: September 2018

Introduction: Transportation safety analyses have traditionally relied on crash data. The limitations of these crash data in terms of timeliness and efficiency are well understood and many studies have explored the feasibility of using alternative surrogate measures for evaluation of road safety. Surrogate safety measures have the potential to estimate crash frequency, while requiring reduced data collection efforts relative to crash data based measures. Traditional crash prediction models use factors such as traffic volume, sight distance, and grade to make risk and exposure estimates that are combined with observed crashes, generally using an Empirical Bayes method, to obtain a final crash estimate. Many surrogate measures have the notable advantage of not directly requiring historical crash data from a site to estimate safety. Post Encroachment Time (PET) is one such measure and represents the time difference between a vehicle leaving the area of encroachment and a conflicting vehicle entering the same area. The exact relationship between surrogate measures, such as PET, and crashes in an ongoing research area.

Method: This paper studies the use of PET to estimate crashes between left-turning vehicles and opposing through vehicles for its ability to predict opposing left-turn crashes. By definition, a PET value of 0 implies the occurrence of a crash and the closer the value of PET is to 0, the higher the conflict risk.

Results: This study shows that a model combining PET and traffic volume characteristic (AADT or conflicting volume) has better predictive power than PET alone. Further, it was found that PET may be capturing the impact of certain other intersection characteristics on safety as inclusion of other intersection characteristics such as sight distance, grade, and other parameters result in only marginal impacts on predictive capacity that do not justify the increased model complexity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsr.2018.05.002DOI Listing

Publication Analysis

Top Keywords

crash data
16
intersection characteristics
12
surrogate measures
12
crash
9
post encroachment
8
encroachment time
8
crash prediction
8
traffic volume
8
sight distance
8
distance grade
8

Similar Publications

Crash box development is carried out continuously to obtain a lightweight design and high energy absorption. This dataset presents the results of a crash box experiments. Quasi-static testing of aluminum, honeycomb, and hybrid tube specimens was carried out using a universal testing machine.

View Article and Find Full Text PDF

Background: Motor vehicle crashes are the second leading cause of injury death among adults aged 65 and older in the U.S., second only to falls.

View Article and Find Full Text PDF

Accurate prediction and causal analysis of road crashes are crucial for improving road safety. One critical indicator of road crash severity is whether the involved vehicles require towing. Despite its importance, limited research has utilized this factor for predicting vehicle towing probability and analyzing its causal factors.

View Article and Find Full Text PDF

Sleepiness-related errors are a leading cause of driving accidents, requiring drivers to effectively monitor sleepiness levels. However, there are inter-individual differences in driving performance after sleep loss, with some showing poor driving performance while others show minimal impairment. This research explored if there are differences in self-reported sleepiness and driving performance in healthy drivers who exhibited vulnerability or resistance to objective driving impairment following extended wakefulness.

View Article and Find Full Text PDF

Objective: This study aims to investigate the causes of 2-vehicle collisions involving an autonomous vehicle (AV) and a conventional vehicle (CV). Prior research has primarily focused on the causes of crashes from the perspective of AVs, often neglecting the interactions with CVs.

Method: To address this limitation, the study proposes a classification framework for crash causation patterns in 2-vehicle collisions involving an AV and a CV, considering their interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!